Environmental Microbiology Laboratory, Ecole Polytechnique Federale de Lausanne, Station 6, CH-1015, Lausanne, Switzerland.
Environ Sci Technol. 2013 Apr 16;47(8):3606-13. doi: 10.1021/es3036835. Epub 2013 Mar 26.
Effects of Mn redox cycling on the stability of bioreduced U(IV) are evaluated here. U(VI) can be biologically reduced to less soluble U(IV) species and the stimulation of biological activity to that end is a salient remediation strategy; however, the stability of these materials in the subsurface environments where they form remains unproven. Manganese oxides are capable of rapidly oxidizing U(IV) to U(VI) in mixed batch systems where the two solid phases are in direct contact. However, it is unknown whether the same oxidation would take place in a porous medium. To probe that question, U(IV) immobilized in agarose gels was exposed to conditions allowing biological Mn(II) oxidation (HEPES buffer, Mn(II), 5% O2 and Bacillus sp. SG-1 spores). Results show the oxidation of U(IV) to U(VI) is due primarily to O2 rather than to MnO2. U(VI) produced is retained within the gel to a greater extent when Mn oxides are present, suggesting the formation of strong surface complexes. The implication for the long-term stability of U in a bioremediated site is that, in the absence of competing ligands, biological Mn(II) oxidation may promote the immobilization of U(VI) produced by the oxidation of U(IV).
在这里评估了 Mn 氧化还原循环对生物还原 U(IV)稳定性的影响。U(VI)可以被生物还原为更难溶的 U(IV)物种,而刺激生物活性是一种突出的修复策略;然而,这些材料在它们形成的地下环境中的稳定性尚未得到证实。在混合批处理系统中,锰氧化物能够快速将 U(IV)氧化为 U(VI),其中两种固相直接接触。然而,尚不清楚相同的氧化是否会在多孔介质中发生。为了探究这个问题,将固定在琼脂糖凝胶中的 U(IV)暴露于允许生物 Mn(II)氧化的条件下(HEPES 缓冲液、Mn(II)、5% O2 和芽孢杆菌 SG-1 孢子)。结果表明,U(IV)向 U(VI)的氧化主要是由于 O2 而不是 MnO2。当存在 Mn 氧化物时,凝胶中保留了更多的 U(VI),这表明形成了强表面络合物。对于生物修复地点中 U 的长期稳定性的影响是,在没有竞争配体的情况下,生物 Mn(II)氧化可能会促进由 U(IV)氧化产生的 U(VI)的固定。