Chinni Satyavathi, Anderson Craig R, Ulrich Kai-Uwe, Giammar Daniel E, Tebo Bradley M
Division of Environmental and Biomolecular Systems, Oregon Health & Science University, 20000 NW Walker Road, Beaverton, Oregon 97006, USA.
Environ Sci Technol. 2008 Dec 1;42(23):8709-14. doi: 10.1021/es801388p.
Manganese oxides are widespread in the environment and their surface reactivity has the potential to modifythe geochemical behavior of uranium. We have investigated the effect of different concentrations of U and Mn on the coupled biogeochemical oxidation-reduction reactions of U and Mn. Experiments conducted in the presence of Mn(II)-oxidizing spores from Bacillus sp. strain SG-1 and 5% headspace oxygen show that the Mn oxides produced by these spores can rapidly oxidize UO2. Thirty to fifty times more UO2 is oxidized in the presence of Mn oxides compared to Mn oxide free controls. As a consequence of this U02 oxidation, Mn oxides are reduced to soluble Mn(II) that can be reoxidized by SG-1 spores. SG-1 spores cannot directly oxidize U02, but U02 oxidation proceeds rapidly with Mn(II) concentrations of <5 microM. The rate of UO2 oxidation is equal to the rate of MnO2 reduction with UO2 oxidation controlled by the initial concentrations of UO2, dissolved Mn(II) (in systems with spores), or Mn(IV) oxides (in systems containing preformed MnO2). U(VI) and UO2 decrease the Mn(II) oxidation rate in different ways by inhibiting the Mn(II)-oxidizing enzyme or decreasing the available Mn(II). These results emphasize the need to consider the impact of Mn(II)-oxidizing bacteria when predicting the potential for U02 oxidation in the subsurface.
锰氧化物在环境中广泛存在,其表面反应性有可能改变铀的地球化学行为。我们研究了不同浓度的铀和锰对铀和锰耦合生物地球化学氧化还原反应的影响。在存在来自芽孢杆菌属菌株SG-1的锰(II)氧化孢子和5%顶空氧气的条件下进行的实验表明,这些孢子产生的锰氧化物能够迅速氧化二氧化铀。与无锰氧化物的对照相比,在有锰氧化物存在的情况下,被氧化的二氧化铀多30至50倍。由于这种二氧化铀的氧化,锰氧化物被还原为可溶性的锰(II),而锰(II)又可被SG-1孢子重新氧化。SG-1孢子不能直接氧化二氧化铀,但当锰(II)浓度<5 microM时,二氧化铀的氧化反应迅速进行。二氧化铀的氧化速率等于二氧化锰的还原速率,二氧化铀的氧化受二氧化铀的初始浓度、溶解的锰(II)(在有孢子的体系中)或锰(IV)氧化物(在含有预先形成的二氧化锰的体系中)控制。铀(VI)和二氧化铀通过抑制锰(II)氧化酶或降低可用的锰(II)以不同方式降低锰(II)的氧化速率。这些结果强调了在预测地下二氧化铀氧化潜力时考虑锰(II)氧化细菌影响的必要性。