Biometris - Applied Statistics, Department of Plant Science, Wageningen University Wageningen, Netherlands.
Front Physiol. 2013 Mar 12;4:44. doi: 10.3389/fphys.2013.00044. eCollection 2013.
Genotype-by-environment interaction (GEI) is an important phenomenon in plant breeding. This paper presents a series of models for describing, exploring, understanding, and predicting GEI. All models depart from a two-way table of genotype by environment means. First, a series of descriptive and explorative models/approaches are presented: Finlay-Wilkinson model, AMMI model, GGE biplot. All of these approaches have in common that they merely try to group genotypes and environments and do not use other information than the two-way table of means. Next, factorial regression is introduced as an approach to explicitly introduce genotypic and environmental covariates for describing and explaining GEI. Finally, QTL modeling is presented as a natural extension of factorial regression, where marker information is translated into genetic predictors. Tests for regression coefficients corresponding to these genetic predictors are tests for main effect QTL expression and QTL by environment interaction (QEI). QTL models for which QEI depends on environmental covariables form an interesting model class for predicting GEI for new genotypes and new environments. For realistic modeling of genotypic differences across multiple environments, sophisticated mixed models are necessary to allow for heterogeneity of genetic variances and correlations across environments. The use and interpretation of all models is illustrated by an example data set from the CIMMYT maize breeding program, containing environments differing in drought and nitrogen stress. To help readers to carry out the statistical analyses, GenStat® programs, 15th Edition and Discovery® version, are presented as "Appendix."
基因型与环境互作(GEI)是植物育种中的一个重要现象。本文提出了一系列描述、探索、理解和预测 GEI 的模型。所有模型都从基因型与环境均值的双向表出发。首先,提出了一系列描述性和探索性的模型/方法:Finlay-Wilkinson 模型、AMMI 模型、GGE 双标图。这些方法都有一个共同点,即它们只是试图对基因型和环境进行分组,而不使用均值双向表以外的信息。接下来,引入了因子回归作为一种方法,通过引入基因型和环境协变量来描述和解释 GEI。最后,提出了 QTL 建模作为因子回归的自然扩展,其中标记信息被转化为遗传预测因子。对应这些遗传预测因子的回归系数检验是主效 QTL 表达和 QTL 与环境互作(QEI)的检验。QEI 取决于环境协变量的 QTL 模型形成了一个有趣的模型类,用于预测新基因型和新环境下的 GEI。为了对多个环境中的基因型差异进行现实建模,需要复杂的混合模型来允许遗传方差和相关性在环境之间存在异质性。通过来自 CIMMYT 玉米育种计划的一个实际数据集的例子,说明了所有模型的使用和解释,该数据集包含了干旱和氮胁迫不同的环境。为了帮助读者进行统计分析,提供了 GenStat®程序,第 15 版和 Discovery®版本,作为“附录”。