Suppr超能文献

基因组选择:本质、应用与前景。

Genomic selection: Essence, applications, and prospects.

作者信息

Escamilla Diana M, Li Dongdong, Negus Karlene L, Kappelmann Kiara L, Kusmec Aaron, Vanous Adam E, Schnable Patrick S, Li Xianran, Yu Jianming

机构信息

Department of Agronomy, Iowa State University, Ames, Iowa, USA.

Department of Agronomy, Kansas State University, Manhattan, Kansas, USA.

出版信息

Plant Genome. 2025 Jun;18(2):e70053. doi: 10.1002/tpg2.70053.

Abstract

Genomic selection (GS) emerged as a key part of the solution to ensure the food supply for the growing human population thanks to advances in genotyping and other enabling technologies and improved understanding of the genotype-phenotype relationship in quantitative genetics. GS is a breeding strategy to predict the genotypic values of individuals for selection using their genotypic data and a trained model. It includes four major steps: training population design, model building, prediction, and selection. GS revises the traditional breeding process by assigning phenotyping a new role of generating data for the building of prediction models. The increased capacity of GS to evaluate more individuals, in combination with shorter breeding cycle times, has led to wide adoption in plant breeding. Research studies have been conducted to implement GS with different emphases in crop- and trait-specific applications, prediction models, design of training populations, and identifying factors influencing prediction accuracy. GS plays different roles in plant breeding such as turbocharging of gene banks, parental selection, and candidate selection at different stages of the breeding cycle. It can be enhanced by additional data types such as phenomics, transcriptomics, metabolomics, and enviromics. In light of the rapid development of artificial intelligence, GS can be further improved by either upgrading the entire framework or individual components. Technological advances, research innovations, and emerging challenges in agriculture will continue to shape the role of GS in plant breeding.

摘要

由于基因分型和其他使能技术的进步以及对数量遗传学中基因型-表型关系的深入理解,基因组选择(GS)已成为确保不断增长的人口粮食供应解决方案的关键部分。GS是一种育种策略,利用个体的基因型数据和经过训练的模型来预测其用于选择的基因型值。它包括四个主要步骤:训练群体设计、模型构建、预测和选择。GS通过赋予表型分型一个新的角色,即为构建预测模型生成数据,从而对传统育种过程进行了修订。GS评估更多个体的能力增强,再加上缩短的育种周期,使得其在植物育种中得到了广泛应用。针对作物和性状特定应用、预测模型、训练群体设计以及确定影响预测准确性的因素等不同重点,开展了多项研究来实施GS。GS在植物育种中发挥着不同的作用,例如在育种周期的不同阶段对基因库进行加速、亲本选择和候选选择。它可以通过表型组学、转录组学、代谢组学和环境组学等额外的数据类型得到增强。鉴于人工智能的快速发展,GS可以通过升级整个框架或单个组件得到进一步改进。农业领域的技术进步、研究创新和新出现的挑战将继续塑造GS在植物育种中的作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验