Suppr超能文献

使用环境协变量进行多环境试验数据的混合模型数量性状基因座(QTL)分析,以研究QTL与环境的互作,并以玉米为例。

A mixed-model quantitative trait loci (QTL) analysis for multiple-environment trial data using environmental covariables for QTL-by-environment interactions, with an example in maize.

作者信息

Boer Martin P, Wright Deanne, Feng Lizhi, Podlich Dean W, Luo Lang, Cooper Mark, van Eeuwijk Fred A

机构信息

Biometris, Wageningen UR, Wageningen, 6708 PD, The Netherlands.

出版信息

Genetics. 2007 Nov;177(3):1801-13. doi: 10.1534/genetics.107.071068. Epub 2007 Oct 18.

Abstract

Complex quantitative traits of plants as measured on collections of genotypes across multiple environments are the outcome of processes that depend in intricate ways on genotype and environment simultaneously. For a better understanding of the genetic architecture of such traits as observed across environments, genotype-by-environment interaction should be modeled with statistical models that use explicit information on genotypes and environments. The modeling approach we propose explains genotype-by-environment interaction by differential quantitative trait locus (QTL) expression in relation to environmental variables. We analyzed grain yield and grain moisture for an experimental data set composed of 976 F(5) maize testcross progenies evaluated across 12 environments in the U.S. corn belt during 1994 and 1995. The strategy we used was based on mixed models and started with a phenotypic analysis of multi-environment data, modeling genotype-by-environment interactions and associated genetic correlations between environments, while taking into account intraenvironmental error structures. The phenotypic mixed models were then extended to QTL models via the incorporation of marker information as genotypic covariables. A majority of the detected QTL showed significant QTL-by-environment interactions (QEI). The QEI were further analyzed by including environmental covariates into the mixed model. Most QEI could be understood as differential QTL expression conditional on longitude or year, both consequences of temperature differences during critical stages of the growth.

摘要

在多个环境中对基因型集合进行测量时,植物复杂的数量性状是由同时以复杂方式依赖于基因型和环境的过程产生的结果。为了更好地理解在不同环境中观察到的此类性状的遗传结构,基因型与环境的相互作用应该用使用关于基因型和环境的明确信息的统计模型来建模。我们提出的建模方法通过与环境变量相关的差异数量性状基因座(QTL)表达来解释基因型与环境的相互作用。我们分析了1994年和1995年在美国玉米带的12个环境中评估的由976个F(5)玉米测交后代组成的实验数据集的籽粒产量和籽粒含水量。我们使用的策略基于混合模型,首先对多环境数据进行表型分析,对基因型与环境的相互作用以及环境之间的相关遗传相关性进行建模,同时考虑环境内误差结构。然后通过将标记信息作为基因型协变量纳入,将表型混合模型扩展到QTL模型。大多数检测到的QTL显示出显著的QTL与环境的相互作用(QEI)。通过将环境协变量纳入混合模型对QEI进行了进一步分析。大多数QEI可以理解为以经度或年份为条件的差异QTL表达,这两者都是生长关键阶段温度差异的结果。

相似文献

4
Use of trial clustering to study QTL x environment effects for grain yield and related traits in maize.
Theor Appl Genet. 2004 Dec;110(1):92-105. doi: 10.1007/s00122-004-1781-y. Epub 2004 Nov 12.
5
Using probe genotypes to dissect QTL × environment interactions for grain yield components in winter wheat.
Theor Appl Genet. 2010 Nov;121(8):1501-17. doi: 10.1007/s00122-010-1406-6. Epub 2010 Aug 10.
8
The Interaction of Genotype and Environment Determines Variation in the Maize Kernel Ionome.
G3 (Bethesda). 2016 Dec 7;6(12):4175-4183. doi: 10.1534/g3.116.034827.
10
QTL detection for stover yield and quality traits using two connected populations in high-oil maize.
Plant Physiol Biochem. 2009 Oct;47(10):886-94. doi: 10.1016/j.plaphy.2009.06.001. Epub 2009 Jun 13.

引用本文的文献

1
Prediction of Australian wheat genotype by environment interactions and mega-environments.
Theor Appl Genet. 2025 Sep 4;138(9):241. doi: 10.1007/s00122-025-05023-6.
2
Merging traditional practices and modern technology through computational plant breeding.
Plant Physiol. 2025 Sep 1;199(1). doi: 10.1093/plphys/kiaf355.
4
Toward a general framework for AI-enabled prediction in crop improvement.
Theor Appl Genet. 2025 Jun 12;138(7):151. doi: 10.1007/s00122-025-04928-6.
5
Genomic selection: Essence, applications, and prospects.
Plant Genome. 2025 Jun;18(2):e70053. doi: 10.1002/tpg2.70053.
7
metaGE: Investigating genotype x environment interactions through GWAS meta-analysis.
PLoS Genet. 2025 Jan 10;21(1):e1011553. doi: 10.1371/journal.pgen.1011553. eCollection 2025 Jan.
8
10
Modeling QTL-by-environment interactions for multi-parent populations.
Front Plant Sci. 2024 Jul 31;15:1410851. doi: 10.3389/fpls.2024.1410851. eCollection 2024.

本文引用的文献

3
A model selection approach for the identification of quantitative trait loci in experimental crosses, allowing epistasis.
Genetics. 2009 Mar;181(3):1077-86. doi: 10.1534/genetics.108.094565. Epub 2008 Dec 22.
4
Models for navigating biological complexity in breeding improved crop plants.
Trends Plant Sci. 2006 Dec;11(12):587-93. doi: 10.1016/j.tplants.2006.10.006. Epub 2006 Nov 7.
5
QTL methodology for response curves on the basis of non-linear mixed models, with an illustration to senescence in potato.
Theor Appl Genet. 2006 Jul;113(2):288-300. doi: 10.1007/s00122-006-0294-2. Epub 2006 May 20.
6
Relaxed significance criteria for linkage analysis.
Genetics. 2006 Aug;173(4):2371-81. doi: 10.1534/genetics.105.052506. Epub 2006 Jun 18.
7
9
A penalized maximum likelihood method for estimating epistatic effects of QTL.
Heredity (Edinb). 2005 Jul;95(1):96-104. doi: 10.1038/sj.hdy.6800702.
10
Extending Xu's Bayesian model for estimating polygenic effects using markers of the entire genome.
Genetics. 2005 Jul;170(3):1435-8. doi: 10.1534/genetics.105.040469. Epub 2005 May 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验