Suppr超能文献

铜- ZSM - 5:一种用于甲烷氧化的仿生无机模型。

Cu-ZSM-5: A biomimetic inorganic model for methane oxidation.

作者信息

Vanelderen Pieter, Hadt Ryan G, Smeets Pieter J, Solomon Edward I, Schoonheydt Robert A, Sels Bert F

机构信息

Center for Surface Chemistry and Catalysis, K.U.Leuven, Kasteelpark Arenberg 23, B-3001 Leuven, Belgium.

出版信息

J Catal. 2011 Dec 1;284(2):157-164. doi: 10.1016/j.jcat.2011.10.009. Epub 2011 Nov 14.

Abstract

The present work highlights recent advances in elucidating the methane oxidation mechanism of inorganic Cu-ZSM-5 biomimic and in identifying the reactive intermediates that are involved. Such molecular understanding is important in view of upgrading abundantly available methane, but also to comprehend the working mechanism of genuine Cu-containing oxidation enzymes.

摘要

本工作突出了在阐明无机Cu-ZSM-5仿生材料的甲烷氧化机制以及确定其中涉及的反应中间体方面的最新进展。鉴于将大量可用的甲烷进行升级,这种分子层面的理解很重要,而且对于理解真正含铜氧化酶的工作机制也很重要。

相似文献

1
Cu-ZSM-5: A biomimetic inorganic model for methane oxidation.
J Catal. 2011 Dec 1;284(2):157-164. doi: 10.1016/j.jcat.2011.10.009. Epub 2011 Nov 14.
5
Catalytic Performance of a Dicopper-Oxo Complex for Methane Hydroxylation.
Inorg Chem. 2018 Jan 2;57(1):8-11. doi: 10.1021/acs.inorgchem.7b02563. Epub 2017 Dec 16.
6
Improved Efficiency for Partial Oxidation of Methane by Controlled Copper Deposition on Surface-Modified ZSM-5.
ChemCatChem. 2016 Feb;8(3):562-570. doi: 10.1002/cctc.201500980. Epub 2015 Dec 4.
7
Oxygen precursor to the reactive intermediate in methanol synthesis by Cu-ZSM-5.
J Am Chem Soc. 2010 Oct 27;132(42):14736-8. doi: 10.1021/ja106283u.
8
The Role of Copper Speciation in the Low Temperature Oxidative Upgrading of Short Chain Alkanes over Cu/ZSM-5 Catalysts.
Chemphyschem. 2018 Feb 19;19(4):469-478. doi: 10.1002/cphc.201701046. Epub 2018 Jan 18.
9
A [Cu2O]2+ core in Cu-ZSM-5, the active site in the oxidation of methane to methanol.
Proc Natl Acad Sci U S A. 2009 Nov 10;106(45):18908-13. doi: 10.1073/pnas.0910461106. Epub 2009 Oct 28.

引用本文的文献

2
Elucidation of the Structure-Activity Relationship for Cu-Erionite in the Direct Conversion of Methane to Methanol: An Operando XAS Study.
J Am Chem Soc. 2025 Aug 13;147(32):28723-28734. doi: 10.1021/jacs.5c03554. Epub 2025 Jun 20.
3
Coamplified Nanozyme Cocktails for Cascade Reaction-Driven Antioxidant Treatments.
ACS Appl Mater Interfaces. 2024 Oct 9;16(40):54485-54495. doi: 10.1021/acsami.4c12511. Epub 2024 Sep 24.
4
Tuning Copper Active Site Composition in Cu-MOR through Co-Cation Modification for Methane Activation.
ACS Catal. 2023 Feb 3;13(3):1906-1915. doi: 10.1021/acscatal.2c05271. Epub 2023 Jan 18.
5
Methane Oxidation to Methanol.
Chem Rev. 2023 May 10;123(9):6359-6411. doi: 10.1021/acs.chemrev.2c00439. Epub 2022 Dec 2.
6
Methane adsorption and methanol desorption of copper modified boron silicate.
RSC Adv. 2018 Oct 26;8(63):36369-36374. doi: 10.1039/c8ra08038k. eCollection 2018 Oct 22.
7
Harnessing of Diluted Methane Emissions by Direct Partial Oxidation of Methane to Methanol over Cu/Mordenite.
Ind Eng Chem Res. 2021 Jul 7;60(26):9409-9417. doi: 10.1021/acs.iecr.1c01069. Epub 2021 Jun 24.
9
Using a monocopper-superoxo complex to prepare multicopper-peroxo species relevant to proposed enzyme intermediates.
J Inorg Biochem. 2021 Sep;222:111498. doi: 10.1016/j.jinorgbio.2021.111498. Epub 2021 Jun 3.
10
Electronic Structures and Reactivity Profiles of Aryl Nitrenoid-Bridged Dicopper Complexes.
J Am Chem Soc. 2020 Feb 5;142(5):2264-2276. doi: 10.1021/jacs.9b09616. Epub 2020 Jan 22.

本文引用的文献

1
Structural and Spectroscopic Characterization of a Mononuclear Hydroperoxo-Copper(II) Complex with Tripodal Pyridylamine Ligands.
Angew Chem Int Ed Engl. 1998 Apr 3;37(6):798-799. doi: 10.1002/(SICI)1521-3773(19980403)37:6<798::AID-ANIE798>3.0.CO;2-3.
2
Oxidation States of Copper Ions in ZSM-5 Zeolites. A Multitechnique Investigation.
J Phys Chem B. 2000 May 4;104(17):4064-4073. doi: 10.1021/jp993893u.
3
The nature of cationic adsorption sites in alkaline zeolites--single, dual and multiple cation sites.
Phys Chem Chem Phys. 2012 Feb 7;14(5):1552-69. doi: 10.1039/c2cp23237e. Epub 2011 Dec 21.
4
Copper dioxygen (bio)inorganic chemistry.
Faraday Discuss. 2011;148:11-39; discussion 97-108. doi: 10.1039/c005500j.
5
UV-VIS-NIR spectroscopy and microscopy of heterogeneous catalysts.
Chem Soc Rev. 2010 Dec;39(12):5051-66. doi: 10.1039/c0cs00080a. Epub 2010 Nov 1.
6
Oxygen precursor to the reactive intermediate in methanol synthesis by Cu-ZSM-5.
J Am Chem Soc. 2010 Oct 27;132(42):14736-8. doi: 10.1021/ja106283u.
7
Biochemistry: Getting the metal right.
Nature. 2010 May 6;465(7294):40-1. doi: 10.1038/465040a.
8
Oxidation of methane by a biological dicopper centre.
Nature. 2010 May 6;465(7294):115-9. doi: 10.1038/nature08992. Epub 2010 Apr 21.
9
Transition-metal ions in zeolites: coordination and activation of oxygen.
Inorg Chem. 2010 Apr 19;49(8):3573-83. doi: 10.1021/ic901814f.
10
A new copper-oxo player in methane oxidation.
Proc Natl Acad Sci U S A. 2009 Nov 10;106(45):18877-8. doi: 10.1073/pnas.0911413106. Epub 2009 Nov 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验