Suppr超能文献

不同辅助亚基组成的 BK 钾通道复合物受 ω-3 脂肪酸 DHA 调节的机制。

Mechanism of the modulation of BK potassium channel complexes with different auxiliary subunit compositions by the omega-3 fatty acid DHA.

机构信息

Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA.

出版信息

Proc Natl Acad Sci U S A. 2013 Mar 19;110(12):4822-7. doi: 10.1073/pnas.1222003110. Epub 2013 Mar 4.

Abstract

Large-conductance Ca(2+)- and voltage-activated K(+) (BK) channels are well known for their functional versatility, which is bestowed in part by their rich modulatory repertoire. We recently showed that long-chain omega-3 polyunsaturated fatty acids such as docosahexaenoic acid (DHA) found in oily fish lower blood pressure by activating vascular BK channels made of Slo1+β1 subunits. Here we examined the action of DHA on BK channels with different auxiliary subunit compositions. Neuronal Slo1+β4 channels were just as well activated by DHA as vascular Slo1+β1 channels. In contrast, the stimulatory effect of DHA was much smaller in Slo1+β2, Slo1+LRRC26 (γ1), and Slo1 channels without auxiliary subunits. Mutagenesis of β1, β2, and β4 showed that the large effect of DHA in Slo1+β1 and Slo1+β4 is conferred by the presence of two residues, one in the N terminus and the other in the first transmembrane segment of the β1 and β4 subunits. Transfer of this amino acid pair from β1 or β4 to β2 introduces a large response to DHA in Slo1+β2. The presence of a pair of oppositely charged residues at the aforementioned positions in β subunits is associated with a large response to DHA. The Slo1 auxiliary subunits are expressed in a highly tissue-dependent fashion. Thus, the subunit composition-dependent stimulation by DHA demonstrates that BK channels are effectors of omega-3 fatty acids with marked tissue specificity.

摘要

大电导钙激活钾(BK)通道以其功能多样性而闻名,部分原因是它们具有丰富的调节谱。我们最近表明,长链ω-3 多不饱和脂肪酸,如油性鱼类中的二十二碳六烯酸(DHA),通过激活由 Slo1+β1 亚基组成的血管 BK 通道来降低血压。在这里,我们研究了 DHA 对具有不同辅助亚基组成的 BK 通道的作用。神经元 Slo1+β4 通道与血管 Slo1+β1 通道一样容易被 DHA 激活。相比之下,在 Slo1+β2、Slo1+LRRC26(γ1)和没有辅助亚基的 Slo1 通道中,DHA 的刺激作用要小得多。对β1、β2 和β4 的突变显示,DHA 在 Slo1+β1 和 Slo1+β4 中的大作用是由β1 和β4 亚基的两个残基赋予的,一个在 N 端,另一个在第一个跨膜片段中。将这个氨基酸对从β1 或β4 转移到β2 中,会在 Slo1+β2 中引入对 DHA 的大响应。β 亚基中上述位置的一对带相反电荷的残基的存在与对 DHA 的大响应有关。Slo1 辅助亚基以高度组织依赖性的方式表达。因此,DHA 依赖于亚基组成的刺激表明 BK 通道是 ω-3 脂肪酸的效应器,具有明显的组织特异性。

相似文献

1
Mechanism of the modulation of BK potassium channel complexes with different auxiliary subunit compositions by the omega-3 fatty acid DHA.
Proc Natl Acad Sci U S A. 2013 Mar 19;110(12):4822-7. doi: 10.1073/pnas.1222003110. Epub 2013 Mar 4.
2
A point mutation in the human Slo1 channel that impairs its sensitivity to omega-3 docosahexaenoic acid.
J Gen Physiol. 2013 Nov;142(5):507-22. doi: 10.1085/jgp.201311061. Epub 2013 Oct 14.
3
Omega-3 fatty acids lower blood pressure by directly activating large-conductance Ca²⁺-dependent K⁺ channels.
Proc Natl Acad Sci U S A. 2013 Mar 19;110(12):4816-21. doi: 10.1073/pnas.1221997110. Epub 2013 Mar 4.
4
Two distinct effects of PIP2 underlie auxiliary subunit-dependent modulation of Slo1 BK channels.
J Gen Physiol. 2015 Apr;145(4):331-43. doi: 10.1085/jgp.201511363.
6
Conopeptide Vt3.1 preferentially inhibits BK potassium channels containing β4 subunits via electrostatic interactions.
J Biol Chem. 2014 Feb 21;289(8):4735-42. doi: 10.1074/jbc.M113.535898. Epub 2014 Jan 7.
7
Dual allosteric modulation of voltage and calcium sensitivities of the Slo1-LRRC channel complex.
Mol Cell. 2023 Dec 21;83(24):4555-4569.e4. doi: 10.1016/j.molcel.2023.11.005. Epub 2023 Nov 29.
8
Single Channel Recordings Reveal Differential β2 Subunit Modulations Between Mammalian and Drosophila BKCa(β2) Channels.
PLoS One. 2016 Oct 18;11(10):e0163308. doi: 10.1371/journal.pone.0163308. eCollection 2016.
10
Modulation of BK channel voltage gating by different auxiliary β subunits.
Proc Natl Acad Sci U S A. 2012 Nov 13;109(46):18991-6. doi: 10.1073/pnas.1216953109. Epub 2012 Oct 29.

引用本文的文献

1
BK channels mediate a presynaptic form of mGluR-LTD in the neonatal hippocampus.
Proc Natl Acad Sci U S A. 2025 Jan 14;122(2):e2411506122. doi: 10.1073/pnas.2411506122. Epub 2025 Jan 8.
2
Activation mechanism and novel binding sites of the BK channel activator CTIBD.
Life Sci Alliance. 2024 Aug 1;7(10). doi: 10.26508/lsa.202402621. Print 2024 Oct.
3
Pulmonary Circulation Under Pressure: Pathophysiological and Therapeutic Implications of BK Channel.
Cardiovasc Drugs Ther. 2025 Apr;39(2):415-433. doi: 10.1007/s10557-023-07503-7. Epub 2023 Aug 25.
5
Structural determinants of acid-sensing ion channel potentiation by single chain lipids.
J Gen Physiol. 2022 Jul 4;154(7). doi: 10.1085/jgp.202213156. Epub 2022 May 18.
6
Perspectives on Potential Fatty Acid Modulations of Motility Associated Human Sperm Ion Channels.
Int J Mol Sci. 2022 Mar 28;23(7):3718. doi: 10.3390/ijms23073718.
7
Calcium-Dependent Ion Channels and the Regulation of Arteriolar Myogenic Tone.
Front Physiol. 2021 Nov 8;12:770450. doi: 10.3389/fphys.2021.770450. eCollection 2021.
8
The Large-Conductance, Calcium-Activated Potassium Channel: A Big Key Regulator of Cell Physiology.
Front Physiol. 2021 Oct 21;12:750615. doi: 10.3389/fphys.2021.750615. eCollection 2021.
9
Calcium-Activated K Channels (K) and Therapeutic Implications.
Handb Exp Pharmacol. 2021;267:379-416. doi: 10.1007/164_2021_459.
10
K and Ca Channels Regulate Ca Signaling in Chondrocytes: An Illustrated Review.
Cells. 2020 Jun 29;9(7):1577. doi: 10.3390/cells9071577.

本文引用的文献

1
Omega-3 fatty acids lower blood pressure by directly activating large-conductance Ca²⁺-dependent K⁺ channels.
Proc Natl Acad Sci U S A. 2013 Mar 19;110(12):4816-21. doi: 10.1073/pnas.1221997110. Epub 2013 Mar 4.
2
Influence of peptide dipoles and hydrogen bonds on reactive cysteine pKa values in fission yeast DJ-1.
FEBS J. 2012 Nov;279(22):4111-20. doi: 10.1111/febs.12004. Epub 2012 Oct 11.
3
The first transmembrane domain (TM1) of β2-subunit binds to the transmembrane domain S1 of α-subunit in BK potassium channels.
FEBS Lett. 2012 Jul 30;586(16):2287-93. doi: 10.1016/j.febslet.2012.05.066. Epub 2012 Jun 16.
4
BK potassium channel modulation by leucine-rich repeat-containing proteins.
Proc Natl Acad Sci U S A. 2012 May 15;109(20):7917-22. doi: 10.1073/pnas.1205435109. Epub 2012 Apr 30.
5
Omega-3 fatty acids EPA and DHA: health benefits throughout life.
Adv Nutr. 2012 Jan;3(1):1-7. doi: 10.3945/an.111.000893. Epub 2012 Jan 5.
6
Docosahexaenoic acid (DHA): an ancient nutrient for the modern human brain.
Nutrients. 2011 May;3(5):529-54. doi: 10.3390/nu3050529. Epub 2011 May 10.
7
Omega-3 fatty acids and cardiovascular disease: effects on risk factors, molecular pathways, and clinical events.
J Am Coll Cardiol. 2011 Nov 8;58(20):2047-67. doi: 10.1016/j.jacc.2011.06.063.
8
The use of omega-3 fatty acids in mental illness.
J Pharm Pract. 2011 Oct;24(5):452-71. doi: 10.1177/0897190011422876. Epub 2011 Sep 22.
9
Charge substitution for a deep-pore residue reveals structural dynamics during BK channel gating.
J Gen Physiol. 2011 Aug;138(2):137-54. doi: 10.1085/jgp.201110632. Epub 2011 Jul 11.
10
Nutritional omega-3 deficiency abolishes endocannabinoid-mediated neuronal functions.
Nat Neurosci. 2011 Mar;14(3):345-50. doi: 10.1038/nn.2736. Epub 2011 Jan 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验