McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
Instituto de Ciencias Biomedicas, Facultad de Medicina y Facultad de Ciencias de La Vida, Universidad Andres Bello, Santiago, Chile.
BMC Biol. 2023 Nov 14;21(1):232. doi: 10.1186/s12915-023-01714-y.
Copy number variations, and particularly duplications of genomic regions, have been strongly associated with various neurodegenerative conditions including autism spectrum disorder (ASD). These genetic variations have been found to have a significant impact on brain development and function, which can lead to the emergence of neurological and behavioral symptoms. Developing strategies to target these genomic duplications has been challenging, as the presence of endogenous copies of the duplicate genes often complicates the editing strategies.
Using the ASD and anxiety mouse model Flailer, which contains a partial genomic duplication working as a dominant negative for MyoVa, we demonstrate the use of DN-CRISPRs to remove a 700 bp genomic region in vitro and in vivo. Importantly, DN-CRISPRs have not been used to remove genomic regions using sgRNA with an offset greater than 300 bp. We found that editing the flailer gene in primary cortical neurons reverts synaptic transport and transmission defects. Moreover, long-term depression (LTD), disrupted in Flailer animals, is recovered after gene editing. Delivery of DN-CRISPRs in vivo shows that local delivery to the ventral hippocampus can rescue some of the mutant behaviors, while intracerebroventricular delivery, completely recovers the Flailer animal phenotype associated to anxiety and ASD.
Our results demonstrate the potential of DN-CRISPR to efficiently remove larger genomic duplications, working as a new gene therapy approach for treating neurodegenerative diseases.
拷贝数变异,特别是基因组区域的重复,与各种神经退行性疾病密切相关,包括自闭症谱系障碍(ASD)。这些遗传变异已被发现对大脑发育和功能有重大影响,这可能导致神经和行为症状的出现。开发针对这些基因组重复的策略具有挑战性,因为重复基因的内源性副本的存在常常使编辑策略复杂化。
我们使用包含部分基因组重复的 ASD 和焦虑小鼠模型 Flailer,该重复作为 MyoVa 的显性负突变体,证明了使用 DN-CRISPR 在体外和体内去除 700bp 基因组区域。重要的是,DN-CRISPR 尚未用于使用 sgRNA 去除偏移量大于 300bp 的基因组区域。我们发现编辑原代皮质神经元中的 flailer 基因可恢复突触运输和传递缺陷。此外,Flailer 动物中失调的长时程抑制(LTD)在基因编辑后得到恢复。体内递送 DN-CRISPR 表明,腹侧海马体的局部递送可以挽救一些突变体行为,而脑室内递送则完全恢复与焦虑和 ASD 相关的 Flailer 动物表型。
我们的结果表明,DN-CRISPR 具有去除较大基因组重复的潜力,可作为治疗神经退行性疾病的新基因治疗方法。