Suppr超能文献

拟南芥 AHP2、AHP3 和 AHP5 组氨酸磷酸转移蛋白作为干旱胁迫响应的冗余负调控因子发挥作用。

Arabidopsis AHP2, AHP3, and AHP5 histidine phosphotransfer proteins function as redundant negative regulators of drought stress response.

机构信息

Signaling Pathway Research Unit, RIKEN Plant Science Center, Yokohama, 230-0045, Japan.

出版信息

Proc Natl Acad Sci U S A. 2013 Mar 19;110(12):4840-5. doi: 10.1073/pnas.1302265110. Epub 2013 Mar 4.

Abstract

Cytokinin is an essential phytohormone controlling various biological processes, including environmental stress responses. In Arabidopsis, although the cytokinin (CK)-related phosphorelay--consisting of three histidine kinases, five histidine phosphotransfer proteins (AHPs), and a number of response regulators--has been known to be important for stress responses, the AHPs required for CK signaling during drought stress remain elusive. Here, we report that three Arabidopsis AHPs, namely AHP2, AHP3, and AHP5, control responses to drought stress in negative and redundant manner. Loss of function of these three AHP genes resulted in a strong drought-tolerant phenotype that was associated with the stimulation of protective mechanisms. Specifically, cell membrane integrity was improved as well as an increased sensitivity to abscisic acid (ABA) was observed rather than an alteration in ABA-mediated stomatal closure and density. Consistent with their negative regulatory functions, all three AHP genes' expression was down-regulated by dehydration, which most likely resulted from a stress-induced reduction of endogenous CK levels. Furthermore, global transcriptional analysis of ahp2,3,5 leaves revealed down-regulation of many well-known stress- and/or ABA-responsive genes, suggesting that these three AHPs may control drought response in both ABA-dependent and ABA-independent manners. The discovery of mechanisms of activation and the targets of the downstream components of CK signaling involved in stress responses is an important and challenging goal for the study of plant stress regulatory network responses and plant growth. The knowledge gained from this study also has broad potential for biotechnological applications to increase abiotic stress tolerance in plants.

摘要

细胞分裂素是一种控制各种生物过程的必需植物激素,包括环境胁迫反应。在拟南芥中,尽管由三个组氨酸激酶、五个组氨酸磷酸转移蛋白(AHPs)和一些响应调节剂组成的细胞分裂素(CK)相关磷酸传递系统对于应激反应很重要,但在干旱胁迫下,CK 信号所需的 AHPs 仍不清楚。在这里,我们报告三个拟南芥 AHPs,即 AHP2、AHP3 和 AHP5,以负向冗余的方式控制对干旱胁迫的反应。这些三个 AHP 基因的功能丧失导致强烈的耐旱表型,这与保护机制的刺激有关。具体而言,改善了细胞膜的完整性,并观察到对脱落酸(ABA)的敏感性增加,而不是 ABA 介导的气孔关闭和密度的改变。与它们的负调控功能一致,这三个 AHP 基因的表达均因脱水而下调,这很可能是由于应激诱导的内源性 CK 水平降低所致。此外,ahp2、3、5 叶片的全转录组分析显示,许多已知的应激和/或 ABA 响应基因下调,表明这三个 AHP 可能以 ABA 依赖和 ABA 独立的方式控制干旱反应。激活机制的发现以及 CK 信号下游组分的靶标参与应激反应是研究植物应激调节网络反应和植物生长的一个重要而具有挑战性的目标。本研究获得的知识也具有广泛的潜力,可用于提高植物的非生物胁迫耐受性。

相似文献

1
Arabidopsis AHP2, AHP3, and AHP5 histidine phosphotransfer proteins function as redundant negative regulators of drought stress response.
Proc Natl Acad Sci U S A. 2013 Mar 19;110(12):4840-5. doi: 10.1073/pnas.1302265110. Epub 2013 Mar 4.
3
AHP2, AHP3, and AHP5 act downstream of CKI1 in Arabidopsis female gametophyte development.
J Exp Bot. 2017 Jun 15;68(13):3365-3373. doi: 10.1093/jxb/erx181.
4
The histidine phosphotransfer AHP4 plays a negative role in Arabidopsis plant response to drought.
Plant J. 2022 Sep;111(6):1732-1752. doi: 10.1111/tpj.15920. Epub 2022 Aug 23.
7
Arabidopsis type B cytokinin response regulators ARR1, ARR10, and ARR12 negatively regulate plant responses to drought.
Proc Natl Acad Sci U S A. 2016 Mar 15;113(11):3090-5. doi: 10.1073/pnas.1600399113. Epub 2016 Feb 16.
8
10
Hydrogen sulfide interacting with abscisic acid in stomatal regulation responses to drought stress in Arabidopsis.
Plant Physiol Biochem. 2013 Jan;62:41-6. doi: 10.1016/j.plaphy.2012.10.017. Epub 2012 Nov 7.

引用本文的文献

2
To grow or not to grow: the enigma of plant root growth dynamism.
Plant Mol Biol. 2025 Jul 30;115(4):93. doi: 10.1007/s11103-025-01631-4.
3
Genome-wide analysis of AHP genes in soybean and the role of GmAHP10 in improving salt stress tolerance.
Funct Integr Genomics. 2025 Jun 18;25(1):130. doi: 10.1007/s10142-025-01636-8.
4
New insights into the salt-responsive regulation in eelgrass at transcriptional and post-transcriptional levels.
Front Plant Sci. 2025 Feb 6;16:1497064. doi: 10.3389/fpls.2025.1497064. eCollection 2025.
6
Spatiotemporal transcriptome and metabolome landscapes of cotton somatic embryos.
Nat Commun. 2025 Jan 20;16(1):859. doi: 10.1038/s41467-025-55870-6.
7
Adaptive Strategy of the Perennial Halophyte Grass to Long-Term Salinity Stress.
Plants (Basel). 2024 Dec 8;13(23):3445. doi: 10.3390/plants13233445.
8
Regulatory Dynamics of Plant Hormones and Transcription Factors under Salt Stress.
Biology (Basel). 2024 Aug 29;13(9):673. doi: 10.3390/biology13090673.
9
UV-B Stress-Triggered Amino Acid Reprogramming and ABA-Mediated Hormonal Crosstalk in Pall.
Plants (Basel). 2024 Aug 12;13(16):2232. doi: 10.3390/plants13162232.

本文引用的文献

2
Benefits of brassinosteroid crosstalk.
Trends Plant Sci. 2012 Oct;17(10):594-605. doi: 10.1016/j.tplants.2012.05.012. Epub 2012 Jun 26.
3
Cytokinin receptor-dependent and receptor-independent pathways in the dehydration response of Arabidopsis thaliana.
J Plant Physiol. 2012 Sep 15;169(14):1382-91. doi: 10.1016/j.jplph.2012.05.007. Epub 2012 Jun 15.
4
Systems biology-based approaches toward understanding drought tolerance in food crops.
Crit Rev Biotechnol. 2013 Mar;33(1):23-39. doi: 10.3109/07388551.2012.659174. Epub 2012 Feb 25.
6
Cytokinins: metabolism and function in plant adaptation to environmental stresses.
Trends Plant Sci. 2012 Mar;17(3):172-9. doi: 10.1016/j.tplants.2011.12.005. Epub 2012 Jan 9.
8
Two-component systems and their co-option for eukaryotic signal transduction.
Curr Biol. 2011 May 10;21(9):R320-30. doi: 10.1016/j.cub.2011.02.045.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验