Suppr超能文献

原子力显微镜对培养的人细胞-多层骨膜片的生物力学评估。

Biomechanical evaluation by AFM of cultured human cell-multilayered periosteal sheets.

机构信息

Division of Oral Bioengineering, Department of Tissue Regeneration and Reconstitution, Institute of Medicine and Dentistry, Niigata University, Niigata, Japan.

出版信息

Micron. 2013 May;48:1-10. doi: 10.1016/j.micron.2013.02.001. Epub 2013 Feb 11.

Abstract

We previously demonstrated that thicker periosteal sheets with enhanced cell layering maintain their component cells at relatively immature stages of differentiation but express a high in vivo osteogenic potential. As it has been recently proposed that stiff scaffolds provide a mechanical cue to various cell types that promotes differentiation, we postulated that the maintenance of immature cells in our periosteal sheets is due to the mechanical stiffness of the multilayered-cell architecture. To demonstrate the biomechanical characteristics of our periosteal sheets, we have determined their stiffnesses with atomic force microscopy (AFM) and evaluated the expression of extracellular matrix (ECM) components specifically by both immunocytochemistry and a complementary DNA microarray technology. Compared to osteoblastic Saos2 cells, the cytoskeletal fibers were developed more in the periosteal cells, but the periosteal cells in monolayer culture developed before either the cells in the peripheral or central regions of the periosteal sheets developed. However, the nanoindentation by AFM distinguished the central region from the peripheral region. The peak stiffness values of cells were ordered as follows: tissue culture polystyrene (1.66GPa)≫dispersed (9.99kPa)>central region (5.20kPa)>peripheral regions (3.67kPa). Similarly, the degree of development of α-smooth muscle actin (αSMA) filaments within cells was dispersed>central region>peripheral region. In conjunction with the abundantly deposited ECM in the periosteal sheets, these findings suggest that the order of cell stiffness may depend on the integration of the stiffness of individual ECM components and the extent of cytoskeletal fiber formation. Because recently published data have demonstrated that the optimal stiffness for osteogenic differentiation is 25-40kPa, it is plausible that the periosteal cells residing in the less-stiff multilayer regions could be maintained at relatively immature stages under the control of the stem-cell medium in vitro but start differentiating when exposed to the proper stiffness upon release from the culture conditions at the implantation site.

摘要

我们之前的研究表明,具有增强细胞分层的较厚的骨膜片能够维持其组成细胞处于相对不成熟的分化阶段,但具有较高的体内成骨潜能。由于最近有研究表明,刚性支架为各种细胞类型提供了一个机械信号,促进了分化,我们假设我们的骨膜片中未成熟细胞的维持是由于多层细胞结构的机械刚度。为了证明我们的骨膜片的生物力学特性,我们使用原子力显微镜(AFM)确定了它们的刚度,并通过免疫细胞化学和互补 DNA 微阵列技术评估了细胞外基质(ECM)成分的表达。与成骨细胞 Saos2 细胞相比,骨膜细胞中细胞骨架纤维的发育更为发达,但在骨膜片的外周或中央区域的细胞发育之前,单层培养的骨膜细胞已经发育。然而,AFM 的纳米压痕可以区分中央区域和外周区域。细胞的峰值刚度值依次为:组织培养聚苯乙烯(1.66GPa)≫分散(9.99kPa)>中央区域(5.20kPa)>外周区域(3.67kPa)。同样,细胞内α平滑肌肌动蛋白(αSMA)丝的发育程度为分散>中央区域>外周区域。结合骨膜片中丰富的 ECM 沉积,这些发现表明细胞刚度的顺序可能取决于单个 ECM 成分的刚度的整合以及细胞骨架纤维形成的程度。由于最近发表的数据表明,成骨分化的最佳刚度为 25-40kPa,因此可以推测,在体外干细胞培养基的控制下,驻留在刚度较低的多层区域中的骨膜细胞可以保持相对不成熟的状态,但在从培养条件释放并植入到植入部位时,当暴露于适当的刚度时,它们就会开始分化。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验