Genet Med. 2013 Aug;15(8):612-7. doi: 10.1038/gim.2013.9. Epub 2013 Mar 14.
The Evaluation of Genomic Applications in Practice and Prevention (EGAPP) Working Group (EWG) found insufficient evidence to recommend testing for predictive variants in 28 variants (listed in Table 1) to assess risk for type 2 diabetes in the general population, on the basis of studies in populations of northern European descent. The EWG found that the magnitude of net health benefit from the use of any of these tests alone or in combination is close to zero. The EWG discourages clinical use unless further evidence supports improved clinical outcomes.The EWG found insufficient evidence to recommend testing for the TCF7L2 gene to assess risk for type 2 diabetes in high-risk individuals. The EWG found that the magnitude of net health benefit from the use of this test is close to zero. The EWG discourages clinical use unless further evidence supports improved clinical outcomes.On the basis of the available evidence for both the scenarios, the overall certainty of net health benefit is deemed "low."
It has been suggested that genomic profiling in the general population or in high-risk populations for type 2 diabetes might lead to management changes (e.g., earlier initiation or higher rates of medical interventions, or targeted recommendations for behavioral change) that improve type 2 diabetes outcomes or prevent type 2 diabetes. The EWG found no direct evidence to support this possibility; therefore, this review sought indirect evidence aimed at documenting the extent to which genomic profiling alters type 2 diabetes risk estimation, alone and in combination with traditional risk factors, and the extent to which risk classification improves health outcomes.
Assay-related evidence on available genomic profiling tests was deemed inadequate. However, on the basis of existing technologies that have been or may be used, the analytic sensitivity and specificity of tests for individual gene variants might be at least satisfactory.
Twenty-eight candidate markers were evaluated in the general population. Evidence on clinical validity was rated inadequate for 24 of these associations (86%) and adequate for 4 (14%). Inadequate grades were based on limited evidence, poor replication, existence of possible biases, or combinations of these factors. Type 2 diabetes genomic profiling provided areas under the receiver operator characteristics curve of 55%-57%, with 4, 8, and 28 genes. Only TCF7L2 had convincing evidence of an association with type 2 diabetes with an odds ratio of 1.39 (95% confidence interval: 1.33-1.46).TCF7L2 was evaluated for high-risk populations, and the overall odds ratio was 1.66 (95% confidence interval: 1.22-2.27) for association with progression to type 2 diabetes.
No studies were available to provide direct evidence on the balance of benefits and harms for genetic profiling for type 2 diabetes alone or in addition to traditional risk factors in the general population.Evidence for high-risk populations and TCF7L2 was inadequate on the basis of two identified studies. These studies found close to zero additional benefit with the addition of genomic markers to traditional risk factors (diet, body mass index, and glucose tolerance).
Prevention of type 2 diabetes is a public health priority. Improvements in the outcomes associated with genomic profiling could have important impacts. Traditional risk factors (e.g., body mass index, weight, fat mass, and exercise) have an advantage in clinical screening and risk assessment strategies because they measure the actual targets for therapy (e.g., fasting plasma glucose and medical interventions). To be useful in predicting disease risk, genomic testing should improve the predictive value of these traditional risk factors. Some issues important for clinical utility remain unknown, such as the level of risk that changes intervention, whether long-term disease outcomes will improve, how individuals being tested will understand/respond to test results and interact with the health-care system, and whether testing will motivate behavior change or amplify potential harms.
评估基因组应用在实践和预防中的工作组(EWG)发现,基于北欧裔人群的研究,没有足够的证据推荐检测 28 个变体(见表 1)中的预测变体,以评估 2 型糖尿病的风险。EWG 发现,使用这些测试中的任何一个或组合使用的净健康获益的幅度接近零。EWG 不鼓励临床使用,除非有进一步的证据支持改善临床结果。EWG 发现,没有足够的证据推荐检测 TCF7L2 基因,以评估高危人群患 2 型糖尿病的风险。EWG 发现,使用该测试的净健康获益幅度接近零。EWG 不鼓励临床使用,除非有进一步的证据支持改善临床结果。基于这两种情况的现有证据,净健康获益的总体确定性被认为是“低”。
有人认为,对 2 型糖尿病的一般人群或高危人群进行基因组分析可能会导致管理上的改变(例如,更早地开始或更高的医疗干预率,或针对行为改变的针对性建议),从而改善 2 型糖尿病的结果或预防 2 型糖尿病。EWG 没有发现直接证据支持这种可能性;因此,本审查寻求间接证据,旨在记录基因组分析在多大程度上改变了 2 型糖尿病的风险估计,单独使用和与传统危险因素结合使用,以及风险分类在多大程度上改善了健康结果。
对现有基因组分析测试的检测相关证据被认为是不充分的。然而,基于已经或可能使用的现有技术,个体基因变异测试的分析敏感性和特异性至少可能是令人满意的。
在一般人群中评估了 28 个候选标志物。其中 24 个(86%)的临床有效性证据被评为不足,4 个(14%)为充分。不足的等级是基于有限的证据、复制不佳、存在可能的偏倚,或这些因素的组合。2 型糖尿病基因组分析的受试者工作特征曲线下面积为 55%-57%,其中 4、8 和 28 个基因。只有 TCF7L2 有令人信服的证据表明与 2 型糖尿病有关,其比值比为 1.39(95%置信区间:1.33-1.46)。TCF7L2 用于高危人群,总体比值比为 1.66(95%置信区间:1.22-2.27)与进展为 2 型糖尿病相关。
没有研究提供关于单独进行 2 型糖尿病基因检测或在一般人群中与传统危险因素联合使用的利弊平衡的直接证据。高危人群和 TCF7L2 的证据不足,只有两项已确定的研究。这些研究发现,在传统危险因素(如饮食、体重指数和葡萄糖耐量)的基础上增加基因组标志物,几乎没有额外的获益。
预防 2 型糖尿病是公共卫生的重点。与基因组分析相关的结果的改善可能会产生重要影响。传统危险因素(如体重指数、体重、脂肪量和运动)在临床筛查和风险评估策略中具有优势,因为它们可以衡量治疗的实际目标(如空腹血糖和医疗干预)。为了在预测疾病风险方面有用,基因检测应该提高这些传统危险因素的预测价值。一些对临床实用性很重要的问题仍然未知,例如改变干预的风险水平、是否能改善长期疾病结果、被检测的个体将如何理解/响应测试结果并与医疗保健系统互动,以及测试是否会促使行为改变或放大潜在的危害。