Suppr超能文献

在种子形成过程中叶绿体分化和再分化为非光合质体期间质体基因的表达。

Plastid gene expression during chloroplast differentiation and dedifferentiation into non-photosynthetic plastids during seed formation.

机构信息

Laboratoire de Physiologie Cellulaire Végétale, iRTSV, UMR 5168, CNRS/UJF/CEA/INRA, CEA-Grenoble, 17 rue des Martyrs, 38054 Grenoble cedex, France.

出版信息

Plant Mol Biol. 2013 May;82(1-2):59-70. doi: 10.1007/s11103-013-0037-0. Epub 2013 Mar 15.

Abstract

Arabidopsis seed formation is coupled with two plastid differentiation processes. Chloroplast formation starts during embryogenesis and ends with the maturation phase. It is followed by chloroplast dedifferentiation/degeneration that starts at the end of the maturation phase and leads to the presence of small non-photosynthetic plastids in dry seeds. We have analysed mRNA and protein levels of nucleus- and plastid-encoded (NEP and PEP) components of the plastid transcriptional machinery, mRNA and protein levels of some plastid RNA polymerase target genes, changes in plastid transcriptome profiles and mRNA and protein levels of some selected nucleus-encoded plastid-related genes in developing seeds during embryogenesis, maturation and desiccation. As expected, most of the mRNAs and proteins increase in abundance during maturation and decrease during desiccation, when plastids dedifferentiate/degenerate. In contrast, mRNAs and proteins of components of the plastid transcriptional apparatus do not decrease or even still increase during the period of plastid dedifferentiation. Results suggest that proteins of the plastid transcriptional machinery are specifically protected from degradation during the desiccation period and conserved in dry seeds to allow immediate regain of plastid transcriptional activity during stratification/germination. In addition, results reveal accumulation and storage of mRNAs coding for RNA polymerase components and sigma factors in dry seeds. They should provide immediately-to-use templates for translation on cytoplasmic ribosomes in order to enhance RNA polymerase protein levels and to provide regulatory proteins for stored PEP to guaranty efficient plastid genome transcription during germination.

摘要

拟南芥种子的形成与两个质体分化过程相关。叶绿体的形成始于胚胎发生,并在成熟阶段结束。随后是叶绿体的去分化/退化,它始于成熟阶段结束,并导致在干燥种子中存在小的非光合作用质体。我们分析了核编码和质体编码(NEP 和 PEP)的质体转录机器的成分、一些质体 RNA 聚合酶靶基因的 mRNA 和蛋白质水平、质体转录组谱的变化以及一些选定的核编码质体相关基因在胚胎发生、成熟和干燥过程中的发育种子中的 mRNA 和蛋白质水平。正如预期的那样,大多数 mRNA 和蛋白质在成熟过程中增加,在质体去分化/退化过程中减少,当质体去分化/退化时。相比之下,质体转录装置的组成部分的 mRNA 和蛋白质在质体去分化期间不会减少,甚至仍然增加。结果表明,质体转录机器的蛋白质在干燥期间受到特别保护,免受降解,并在干燥种子中保存下来,以允许在分层/萌发期间立即恢复质体转录活性。此外,结果揭示了编码 RNA 聚合酶成分和 sigma 因子的 mRNAs 在干燥种子中的积累和储存。它们应该为细胞质核糖体上的翻译提供即用型模板,以提高 RNA 聚合酶蛋白水平,并为储存的 PEP 提供调节蛋白,以保证在萌发过程中有效转录质体基因组。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验