Descalzi Orazio, Brand Helmut R
Complex Systems Group, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de los Andes, Avenida San Carlos de Apoquindo 2200, Santiago, Chile.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Feb;87(2):022915. doi: 10.1103/PhysRevE.87.022915. Epub 2013 Feb 26.
We describe the stable existence of quasi-one-dimensional solutions of the two-dimensional cubic-quintic complex Ginzburg-Landau equation for a large range of the bifurcation parameter. By quasi-one-dimensional (quasi-1D) in the present context, we mean solutions of fixed shape in one spatial dimension that are simultaneously fully extended and space filling in a second direction. This class of stable solutions arises for parameter values for which simultaneously other classes of solutions are at least locally stable: the zero solution, 2D fixed shape dissipative solitons, or 2D azimuthally symmetric or asymmetric exploding dissipative solitons. We show that quasi-1D solutions can form stable compound states with 2D stationary dissipative solitons or with azimuthally symmetric exploding dissipative solitons. In addition, we find stable breathing quasi-1D solutions near the transition to collapse. The analogy of several features of the work presented here to recent experimental results on convection by Miranda and Burguete [Phys. Rev. E 78, 046305 (2008); Phys. Rev. E 79, 046201 (2009)] is elucidated.
我们描述了二维三次-五次复金兹堡-朗道方程准一维解在大范围分岔参数下的稳定存在性。在当前语境中,所谓准一维(quasi-1D),是指在一个空间维度上具有固定形状,同时在第二个方向上完全扩展且充满空间的解。这类稳定解出现在参数值范围内,此时其他类型的解至少局部稳定:零解、二维固定形状耗散孤子,或二维方位对称或不对称的爆炸式耗散孤子。我们表明,准一维解可以与二维静态耗散孤子或方位对称的爆炸式耗散孤子形成稳定的复合态。此外,我们在向坍缩转变附近发现了稳定的呼吸型准一维解。本文所呈现工作的几个特征与米兰达和布尔盖特近期关于对流的实验结果[《物理评论E》78, 046305 (2008); 《物理评论E》79, 046201 (2009)]的相似性得到了阐明。