Suppr超能文献

闭环电神经调节的高复杂度节奏信号合成。

Synthesis of high-complexity rhythmic signals for closed-loop electrical neuromodulation.

机构信息

Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, M5S 3G9, Canada.

出版信息

Neural Netw. 2013 Jun;42:62-73. doi: 10.1016/j.neunet.2013.01.005. Epub 2013 Jan 21.

Abstract

We propose an approach to synthesizing high-complexity rhythmic signals for closed-loop electrical neuromodulation using cognitive rhythm generator (CRG) networks, wherein the CRG is a hybrid oscillator comprised of (1) a bank of neuronal modes, (2) a ring device (clock), and (3) a static output nonlinearity (mapper). Networks of coupled CRGs have been previously implemented to simulate the electrical activity of biological neural networks, including in silico models of epilepsy, producing outputs of similar waveform and complexity to the biological system. This has enabled CRG network models to be used as platforms for testing seizure control strategies. Presently, we take the application one step further, envisioning therapeutic CRG networks as rhythmic signal generators creating neuromimetic signals for stimulation purposes, motivated by recent research indicating that stimulus complexity and waveform characteristics influence neuromodulation efficacy. To demonstrate this concept, an epileptiform CRG network generating spontaneous seizure-like events (SLEs) was coupled to a therapeutic CRG network, forming a closed-loop neuromodulation system. SLEs are associated with low-complexity dynamics and high phase coherence in the network. The tuned therapeutic network generated a high-complexity, multi-banded rhythmic stimulation signal with prominent theta and gamma-frequency power that suppressed SLEs and increased dynamic complexity in the epileptiform network, as measured by a relative increase in the maximum Lyapunov exponent and decrease in phase coherence. CRG-based neuromodulation outperformed both low and high-frequency periodic pulse stimulation, suggesting that neuromodulation using complex, biomimetic signals may provide an improvement over conventional electrical stimulation techniques for treating neurological disorders such as epilepsy.

摘要

我们提出了一种使用认知节律发生器 (CRG) 网络合成用于闭环电神经调节的高复杂度节律信号的方法,其中 CRG 是由 (1) 神经元模式库、(2) 环形装置(时钟)和 (3) 静态输出非线性(映射器)组成的混合振荡器。 以前已经实现了耦合的 CRG 网络来模拟生物神经网络的电活动,包括癫痫的计算机模型,产生与生物系统相似的波形和复杂度的输出。 这使得 CRG 网络模型能够用作测试癫痫控制策略的平台。 目前,我们更进一步地将应用程序设想为作为刺激目的的节律信号发生器的治疗性 CRG 网络,这是受最近的研究启发的,该研究表明刺激复杂性和波形特征会影响神经调节效果。 为了证明这一概念,一个产生自发癫痫样事件 (SLE) 的癫痫 CRG 网络与一个治疗性 CRG 网络耦合,形成闭环神经调节系统。 SLE 与网络中的低复杂度动力学和高相位相干性相关。 经调整的治疗性网络生成了具有突出的 theta 和 gamma 频率功率的高复杂度、多频带节律刺激信号,抑制了 SLE 并增加了癫痫网络的动态复杂性,这可以通过最大 Lyapunov 指数的相对增加和相位相干性的降低来衡量。基于 CRG 的神经调节的性能优于低频和高频周期性脉冲刺激,这表明使用复杂的、仿生的信号进行神经调节可能比传统的电刺激技术更适合治疗癫痫等神经疾病。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验