Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio 44195, USA.
Anesthesiology. 2013 Jun;118(6):1298-306. doi: 10.1097/ALN.0b013e31828e12b3.
Benchmarking performance across hospitals requires proper adjustment for differences in baseline patient and procedural risk. Recently, a Risk Stratification Index was developed from Medicare data, which used all diagnosis and procedure codes associated with each stay, but did not distinguish present-on-admission (POA) diagnoses from hospital-acquired diagnoses. We sought to (1) develop and validate a risk index for in-hospital mortality using only POA diagnoses, principal procedures, and secondary procedures occurring before the date of the principal procedure (POARisk) and (2) compare hospital performance metrics obtained using the POARisk model with those obtained using a similarly derived model which ignored the timing of diagnoses and procedures (AllCodeRisk).
We used the 2004-2009 California State Inpatient Database to develop, calibrate, and prospectively test our models (n = 24 million). Elastic net logistic regression was used to estimate the two risk indices. Agreement in hospital performance under the two respective risk models was assessed by comparing observed-to-expected mortality ratios; acceptable agreement was predefined as the AllCodeRisk-based observed-to-expected ratio within ± 20% of the POARisk-based observed-to-expected ratio for more than 95% of hospitals.
After recalibration, goodness of fit (i.e., model calibration) within the 2009 data was excellent for both models. C-statistics were 0.958 and 0.981, respectively, for the POARisk and AllCodeRisk models. The AllCodeRisk-based observed-to-expected ratio was within ± 20% of the POARisk-based observed-to-expected ratio for 89% of hospitals, which was slightly lower than the predefined limit of agreement.
Consideration of POA coding meaningfully improved hospital performance measurement. The POARisk model should be used for risk adjustment when POA data are available.
在医院之间进行绩效基准比较需要对基线患者和程序风险的差异进行适当调整。最近,一项风险分层指数是根据医疗保险数据开发的,该指数使用与每次住院相关的所有诊断和程序代码,但没有区分入院时存在的(POA)诊断和医院获得的诊断。我们试图(1)仅使用 POA 诊断、主要程序和主要程序日期之前发生的次要程序(POARisk)开发和验证住院死亡率风险指数,以及(2)比较使用 POARisk 模型获得的医院绩效指标与使用忽略诊断和程序时间的类似衍生模型(AllCodeRisk)获得的医院绩效指标。
我们使用 2004-2009 年加利福尼亚州住院患者数据库来开发、校准和前瞻性测试我们的模型(n = 2400 万)。弹性网络逻辑回归用于估计这两个风险指数。通过比较观察到的死亡率与预期死亡率之比来评估两种风险模型下医院绩效的一致性;可接受的一致性定义为对于超过 95%的医院,AllCodeRisk 为基础的观察到的与预期的比率在 POARisk 为基础的观察到的与预期的比率的±20%范围内。
在重新校准后,两个模型在 2009 年数据中的拟合优度(即模型校准)都非常好。POARisk 和 AllCodeRisk 模型的 C 统计量分别为 0.958 和 0.981。对于 89%的医院,AllCodeRisk 为基础的观察到的与预期的比率在 POARisk 为基础的观察到的与预期的比率的±20%范围内,略低于预定的一致性范围。
考虑到 POA 编码的含义,可以更有意义地改善医院绩效衡量。当有 POA 数据时,应使用 POARisk 模型进行风险调整。