Suppr超能文献

磷脂酶Cβ亚型和二酰甘油激酶-β在啮齿动物小脑中的差异分布证实了单极刷细胞可分为两种主要亚型。

Differential distribution of phospholipase C beta isoforms and diaglycerol kinase-beta in rodents cerebella corroborates the division of unipolar brush cells into two major subtypes.

作者信息

Sekerková Gabriella, Watanabe Masahiko, Martina Marco, Mugnaini Enrico

机构信息

Department of Cellular and Molecular Biology, Feinberg School of Medicine, Northwestern University, 5-465 Searle bldg. 320 E. Superior str, Chicago, IL, 60611, USA,

出版信息

Brain Struct Funct. 2014 Mar;219(2):719-49. doi: 10.1007/s00429-013-0531-9. Epub 2013 Mar 16.

Abstract

Sublineage diversification of specific neural cell classes occurs in complex as well as simply organized regions of the central and peripheral nervous systems; the significance of the phenomenon, however, remains insufficiently understood. The unipolar brush cells (UBCs) are glutamatergic cerebellar interneurons that occur at high density in vestibulocerebellum. As they are classified into subsets that differ in chemical phenotypes, intrinsic properties, and lobular distribution, they represent a valuable neuronal model to study subclass diversification. In this study, we show that cerebellar UBCs of adult rats and mice form two subclasses-type I and type II UBCs-defined by somatodendritic expression of calretinin (CR), mGluR1α, phospholipases PLCβ1 and PLCβ4, and diacylglycerol kinase-beta (DGKβ). We demonstrate that PLCβ1 is associated only with the CR(+) type I UBCs, while PLCβ4 and DGKβ are exclusively present in mGluR1α(+) type II UBCs. Notably, all PLCβ4(+) UBCs, representing about 2/3 of entire UBC population, also express mGluR1α. Furthermore, our data show that the sum of CR(+) type I UBCs and mGluR1α(+) type II UBCs accounts for the entire UBC class identified with Tbr2 immunolabeling. The two UBC subtypes also show a very different albeit somehow overlapping topographical distribution as illustrated by detailed cerebellar maps in this study. Our data not only complement and extend the previous knowledge on the diversity and subclass specificity of the chemical phenotypes within the UBC population, but also provide a new angle to the understanding of the signaling networks in type I and type II UBCs.

摘要

特定神经细胞类别的亚谱系多样化发生在中枢神经系统和周围神经系统复杂以及组织简单的区域;然而,这一现象的意义仍未得到充分理解。单极刷细胞(UBCs)是谷氨酸能小脑中间神经元,在前庭小脑区域高密度存在。由于它们被分类为化学表型、内在特性和小叶分布不同的亚群,它们代表了研究亚类多样化的有价值的神经元模型。在本研究中,我们表明成年大鼠和小鼠的小脑UBCs形成两个亚类——I型和II型UBCs,由钙结合蛋白(CR)、代谢型谷氨酸受体1α(mGluR1α)、磷脂酶PLCβ1和PLCβ4以及二酰基甘油激酶β(DGKβ)的树突体表达来定义。我们证明PLCβ1仅与CR(+)I型UBCs相关,而PLCβ4和DGKβ仅存在于mGluR1α(+)II型UBCs中。值得注意的是,所有PLCβ4(+)UBCs,约占整个UBC群体的2/3,也表达mGluR1α。此外,我们的数据表明,CR(+)I型UBCs和mGluR1α(+)II型UBCs的总和占通过Tbr2免疫标记鉴定的整个UBC类别。如本研究详细的小脑图谱所示,这两种UBC亚型也显示出非常不同但在某种程度上重叠的拓扑分布。我们的数据不仅补充和扩展了关于UBC群体内化学表型多样性和亚类特异性的先前知识,而且为理解I型和II型UBCs中的信号网络提供了一个新角度。

相似文献

5
Purkinje cell phenotype restricts the distribution of unipolar brush cells.
Neuroscience. 2009 Dec 29;164(4):1496-508. doi: 10.1016/j.neuroscience.2009.09.080. Epub 2009 Oct 2.
6
Distribution and phenotypes of unipolar brush cells in relation to the granule cell system of the rat cochlear nucleus.
Neuroscience. 2008 Jun 12;154(1):29-50. doi: 10.1016/j.neuroscience.2008.01.035. Epub 2008 Feb 5.

引用本文的文献

3
Longitudinal single-cell transcriptional dynamics throughout neurodegeneration in SCA1.
Neuron. 2024 Feb 7;112(3):362-383.e15. doi: 10.1016/j.neuron.2023.10.039. Epub 2023 Nov 27.
4
A Continuum of Response Properties across the Population of Unipolar Brush Cells in the Dorsal Cochlear Nucleus.
J Neurosci. 2023 Aug 23;43(34):6035-6045. doi: 10.1523/JNEUROSCI.0873-23.2023. Epub 2023 Jul 28.
5
Differential Modulation of Cerebellar Flocculus Unipolar Brush Cells during Vestibular Compensation.
Biomedicines. 2023 Apr 27;11(5):1298. doi: 10.3390/biomedicines11051298.
6
8
Cerebellar Ataxia Caused by Type II Unipolar Brush Cell Dysfunction in the Asic5 Knockout Mouse.
Sci Rep. 2020 Feb 7;10(1):2168. doi: 10.1038/s41598-020-58901-y.
10
Subcellular compartmentalization of proximal Gα-receptor signaling produces unique hypertrophic phenotypes in adult cardiac myocytes.
J Biol Chem. 2018 Jun 8;293(23):8734-8749. doi: 10.1074/jbc.RA118.002283. Epub 2018 Apr 2.

本文引用的文献

1
PLCβ isoforms differ in their subcellular location and their CT-domain dependent interaction with Gαq.
Cell Signal. 2013 Jan;25(1):255-63. doi: 10.1016/j.cellsig.2012.09.022. Epub 2012 Sep 21.
2
Diacylglycerol kinase β in neurons: functional implications at the synapse and in disease.
Adv Biol Regul. 2012 May;52(2):315-25. doi: 10.1016/j.jbior.2012.03.003. Epub 2012 Mar 30.
3
Cellular neurochemical characterization and subcellular localization of phospholipase C β1 in rat brain.
Neuroscience. 2012 Oct 11;222:239-68. doi: 10.1016/j.neuroscience.2012.06.039. Epub 2012 Jun 23.
6
The intra-molecular activation mechanisms of the dimeric metabotropic glutamate receptor 1 differ depending on the type of G proteins.
Neuropharmacology. 2011 Sep;61(4):832-41. doi: 10.1016/j.neuropharm.2011.05.031. Epub 2011 Jun 13.
7
The history of TRP channels, a commentary and reflection.
Pflugers Arch. 2011 May;461(5):499-506. doi: 10.1007/s00424-010-0920-3. Epub 2011 Feb 2.
8
The unipolar brush cell: a remarkable neuron finally receiving deserved attention.
Brain Res Rev. 2011 Jan 7;66(1-2):220-45. doi: 10.1016/j.brainresrev.2010.10.001. Epub 2010 Nov 5.
9
PLC regulation: emerging pictures for molecular mechanisms.
Trends Biochem Sci. 2011 Feb;36(2):88-96. doi: 10.1016/j.tibs.2010.08.003. Epub 2010 Oct 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验