Suppr超能文献

细胞内区室化的近端 G 蛋白偶联受体信号转导在成年心肌细胞中产生独特的肥大表型。

Subcellular compartmentalization of proximal Gα-receptor signaling produces unique hypertrophic phenotypes in adult cardiac myocytes.

机构信息

From the Departments of Pharmacology and.

Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota 55455 and.

出版信息

J Biol Chem. 2018 Jun 8;293(23):8734-8749. doi: 10.1074/jbc.RA118.002283. Epub 2018 Apr 2.

Abstract

G protein-coupled receptors that signal through Gα (G receptors), such as α-adrenergic receptors (α-ARs) or angiotensin receptors, share a common proximal signaling pathway that activates phospholipase Cβ1 (PLCβ1), which cleaves phosphatidylinositol 4,5-bisphosphate (PIP) to produce inositol 1,4,5-trisphosphate (IP) and diacylglycerol. Despite these common proximal signaling mechanisms, G receptors produce distinct physiological responses, yet the mechanistic basis for this remains unclear. In the heart, G receptors are thought to induce myocyte hypertrophy through a mechanism termed excitation-transcription coupling, which provides a mechanistic basis for compartmentalization of calcium required for contraction IP-dependent intranuclear calcium required for hypertrophy. Here, we identified subcellular compartmentalization of G-receptor signaling as a mechanistic basis for unique G receptor-induced hypertrophic phenotypes in cardiac myocytes. We show that α-ARs co-localize with PLCβ1 and PIP at the nuclear membrane. Further, nuclear α-ARs induced intranuclear PLCβ1 activity, leading to histone deacetylase 5 (HDAC5) export and a robust transcriptional response ( significant up- or down-regulation of 806 genes). Conversely, we found that angiotensin receptors localize to the sarcolemma and induce sarcolemmal PLCβ1 activity, but fail to promote HDAC5 nuclear export, while producing a transcriptional response that is mostly a subset of α-AR-induced transcription. In summary, these results link G-receptor compartmentalization in cardiac myocytes to unique hypertrophic transcription. They suggest a new model of excitation-transcription coupling in adult cardiac myocytes that accounts for differential G-receptor localization and better explains distinct physiological functions of G receptors.

摘要

G 蛋白偶联受体通过 Gα(G 受体)信号传导,如α-肾上腺素能受体(α-ARs)或血管紧张素受体,它们共享一个共同的近端信号通路,该通路激活磷脂酶 Cβ1(PLCβ1),后者将磷脂酰肌醇 4,5-二磷酸(PIP)切割成肌醇 1,4,5-三磷酸(IP)和二酰基甘油。尽管这些共同的近端信号传导机制,G 受体产生不同的生理反应,但这种机制基础仍不清楚。在心脏中,G 受体被认为通过一种称为兴奋转录偶联的机制诱导心肌细胞肥大,这为收缩所需的钙离子的区室化提供了机制基础 IP 依赖性核内钙离子对于肥大。在这里,我们确定了 G 受体信号传导的亚细胞区室化作为 G 受体诱导心肌细胞肥大表型独特的机制基础。我们发现 α-ARs 与 PLCβ1 和 PIP 一起定位于核膜。此外,核 α-ARs 诱导核内 PLCβ1 活性,导致组蛋白去乙酰化酶 5(HDAC5)输出和强大的转录反应(806 个基因的显著上调或下调)。相反,我们发现血管紧张素受体定位于肌膜并诱导肌膜 PLCβ1 活性,但不能促进 HDAC5 核输出,而产生的转录反应主要是 α-AR 诱导转录的子集。总之,这些结果将心肌细胞中的 G 受体区室化与独特的肥大转录联系起来。它们提出了一种新的成年心肌细胞兴奋转录偶联模型,该模型解释了 G 受体的不同定位,并更好地解释了 G 受体的不同生理功能。

相似文献

1
Subcellular compartmentalization of proximal Gα-receptor signaling produces unique hypertrophic phenotypes in adult cardiac myocytes.
J Biol Chem. 2018 Jun 8;293(23):8734-8749. doi: 10.1074/jbc.RA118.002283. Epub 2018 Apr 2.
3
Nuclear compartmentalization of α1-adrenergic receptor signaling in adult cardiac myocytes.
J Cardiovasc Pharmacol. 2015 Feb;65(2):91-100. doi: 10.1097/FJC.0000000000000165.
4
Nuclear alpha1-adrenergic receptors signal activated ERK localization to caveolae in adult cardiac myocytes.
Circ Res. 2008 Oct 24;103(9):992-1000. doi: 10.1161/CIRCRESAHA.108.176024. Epub 2008 Sep 18.
5
6
Coupling to Gq Signaling Is Required for Cardioprotection by an Alpha-1A-Adrenergic Receptor Agonist.
Circ Res. 2019 Sep 13;125(7):699-706. doi: 10.1161/CIRCRESAHA.118.314416. Epub 2019 Aug 20.
7
Nuclear localization drives α1-adrenergic receptor oligomerization and signaling in cardiac myocytes.
Cell Signal. 2012 Mar;24(3):794-802. doi: 10.1016/j.cellsig.2011.11.014. Epub 2011 Nov 18.
8
Gq-initiated cardiomyocyte hypertrophy is mediated by phospholipase Cbeta1b.
FASEB J. 2009 Oct;23(10):3564-70. doi: 10.1096/fj.09-133983. Epub 2009 Jun 29.
9
The IP3 receptor regulates cardiac hypertrophy in response to select stimuli.
Circ Res. 2010 Sep 3;107(5):659-66. doi: 10.1161/CIRCRESAHA.110.220038. Epub 2010 Jul 8.

引用本文的文献

4
Norepinephrine activates β -adrenergic receptors at the inner nuclear membrane in astrocytes.
Glia. 2022 Sep;70(9):1777-1794. doi: 10.1002/glia.24219. Epub 2022 May 19.
6
Subcellular Organization of the cAMP Signaling Pathway.
Pharmacol Rev. 2021 Jan;73(1):278-309. doi: 10.1124/pharmrev.120.000086.
7
Cardiac α1A-adrenergic receptors: emerging protective roles in cardiovascular diseases.
Am J Physiol Heart Circ Physiol. 2021 Feb 1;320(2):H725-H733. doi: 10.1152/ajpheart.00621.2020. Epub 2020 Dec 4.
8
Location Bias as Emerging Paradigm in GPCR Biology and Drug Discovery.
iScience. 2020 Oct 7;23(10):101643. doi: 10.1016/j.isci.2020.101643. eCollection 2020 Oct 23.
9
NF-kB signaling in cardiomyocytes is inhibited by sevoflurane and promoted by propofol.
FEBS Open Bio. 2020 Feb;10(2):259-267. doi: 10.1002/2211-5463.12783. Epub 2020 Jan 15.

本文引用的文献

1
Ga proteins: molecular pharmacology and therapeutic potential.
Cell Mol Life Sci. 2017 Apr;74(8):1379-1390. doi: 10.1007/s00018-016-2405-9. Epub 2016 Nov 4.
2
The atypical 'b' splice variant of phospholipase Cβ1 promotes cardiac contractile dysfunction.
J Mol Cell Cardiol. 2015 Jul;84:95-103. doi: 10.1016/j.yjmcc.2015.04.016. Epub 2015 Apr 25.
3
Comprehensive analysis of lipids in biological systems by liquid chromatography-mass spectrometry.
Trends Analyt Chem. 2014 Oct 1;61:192-206. doi: 10.1016/j.trac.2014.04.017.
4
Nuclear compartmentalization of α1-adrenergic receptor signaling in adult cardiac myocytes.
J Cardiovasc Pharmacol. 2015 Feb;65(2):91-100. doi: 10.1097/FJC.0000000000000165.
7
Regulation of cardiac nitric oxide signaling by nuclear β-adrenergic and endothelin receptors.
J Mol Cell Cardiol. 2013 Sep;62:58-68. doi: 10.1016/j.yjmcc.2013.05.003. Epub 2013 May 17.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验