Suppr超能文献

粟酒裂殖酵母解聚机制伴侣蛋白支持酿酒酵母的生长和朊病毒传播。

Schizosaccharomyces pombe disaggregation machinery chaperones support Saccharomyces cerevisiae growth and prion propagation.

作者信息

Reidy Michael, Sharma Ruchika, Masison Daniel C

机构信息

Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.

出版信息

Eukaryot Cell. 2013 May;12(5):739-45. doi: 10.1128/EC.00301-12. Epub 2013 Mar 15.

Abstract

Hsp100 chaperones protect microorganisms and plants from environmental stress by cooperating with Hsp70 and its nucleotide exchange factor (NEF) and Hsp40 cochaperones to resolubilize proteins from aggregates. The Saccharomyces cerevisiae Hsp104 (Sc-Hsp104)-based disaggregation machinery also is essential for replication of amyloid-based prions. Escherichia coli ClpB can substitute for Hsp104 to propagate [PSI(+)] prions in yeast, but only if E. coli DnaK and GrpE (Hsp70 and NEF) are coexpressed. Here, we tested if the reported inability of Schizosaccharomyces pombe Hsp104 (Sp-Hsp104) to support [PSI(+)] propagation was due to similar species-specific chaperone requirements and find that Sp-Hsp104 alone supported propagation of three different yeast prions. Sp-Hsp70 and Sp-Fes1p (NEF) likewise functioned in place of their Sa. cerevisiae counterparts. Thus, chaperones of these long-diverged species possess conserved activities that function in processes essential for both cell growth and prion propagation, suggesting Sc. pombe can propagate its own prions. We show that curing by Hsp104 overexpression and inactivation can be distinguished and confirm the observation that, unlike Sc-Hsp104, Sp-Hsp104 cannot cure yeast of [PSI(+)] when it is overexpressed. These results are consistent with a view that mechanisms underlying prion replication and elimination are distinct.

摘要

热休克蛋白100(Hsp100)伴侣蛋白通过与热休克蛋白70(Hsp70)及其核苷酸交换因子(NEF)以及热休克蛋白40(Hsp40)共伴侣蛋白协同作用,将聚集的蛋白质重新溶解,从而保护微生物和植物免受环境压力。基于酿酒酵母热休克蛋白104(Sc-Hsp104)的解聚机制对于基于淀粉样蛋白的朊病毒复制也至关重要。大肠杆菌ClpB可以替代Hsp104在酵母中传播[PSI(+)]朊病毒,但前提是要共表达大肠杆菌DnaK和GrpE(Hsp70和NEF)。在这里,我们测试了粟酒裂殖酵母热休克蛋白104(Sp-Hsp104)无法支持[PSI(+)]传播是否是由于类似的物种特异性伴侣蛋白需求,并发现单独的Sp-Hsp104就能支持三种不同酵母朊病毒的传播。同样,Sp-Hsp70和Sp-Fes1p(NEF)也能替代它们在酿酒酵母中的对应物发挥作用。因此,这些长期分化物种的伴侣蛋白具有保守的活性,在细胞生长和朊病毒传播所必需的过程中发挥作用,这表明粟酒裂殖酵母可以传播自身的朊病毒。我们表明,可以区分热休克蛋白104过表达和失活导致的治愈情况,并证实了以下观察结果:与Sc-Hsp104不同,Sp-Hsp104过表达时无法治愈酵母中的[PSI(+)]。这些结果与朊病毒复制和消除的潜在机制不同的观点一致。

相似文献

3
Prokaryotic chaperones support yeast prions and thermotolerance and define disaggregation machinery interactions.
Genetics. 2012 Sep;192(1):185-93. doi: 10.1534/genetics.112.142307. Epub 2012 Jun 25.
4
The Schizosaccharomyces pombe Hsp104 disaggregase is unable to propagate the [PSI] prion.
PLoS One. 2009 Sep 11;4(9):e6939. doi: 10.1371/journal.pone.0006939.
9
Hsp40s specify functions of Hsp104 and Hsp90 protein chaperone machines.
PLoS Genet. 2014 Oct 16;10(10):e1004720. doi: 10.1371/journal.pgen.1004720. eCollection 2014 Oct.
10
Hsp70 targets Hsp100 chaperones to substrates for protein disaggregation and prion fragmentation.
J Cell Biol. 2012 Aug 6;198(3):387-404. doi: 10.1083/jcb.201201074.

引用本文的文献

2
Understanding the molecular mechanisms of human diseases: the benefits of fission yeasts.
Microb Cell. 2024 Aug 2;11:288-311. doi: 10.15698/mic2024.08.833. eCollection 2024.
3
Hsp104 N-terminal domain interaction with substrates plays a regulatory role in protein disaggregation.
FEBS J. 2022 Sep;289(17):5359-5377. doi: 10.1111/febs.16441. Epub 2022 Mar 30.
4
Protein Phase Separation during Stress Adaptation and Cellular Memory.
Cells. 2020 May 23;9(5):1302. doi: 10.3390/cells9051302.
5
Hsp70-nucleotide exchange factor (NEF) Fes1 has non-NEF roles in degradation of gluconeogenic enzymes and cell wall integrity.
PLoS Genet. 2019 Jun 26;15(6):e1008219. doi: 10.1371/journal.pgen.1008219. eCollection 2019 Jun.
6
Dual Roles for Yeast Sti1/Hop in Regulating the Hsp90 Chaperone Cycle.
Genetics. 2018 Aug;209(4):1139-1154. doi: 10.1534/genetics.118.301178. Epub 2018 Jun 21.
7
Curing of [PSI] by Hsp104 Overexpression: Clues to solving the puzzle.
Prion. 2018 Jan 2;12(1):9-15. doi: 10.1080/19336896.2017.1412911. Epub 2018 Feb 2.
9
The copper transport-associated protein Ctr4 can form prion-like epigenetic determinants in .
Microb Cell. 2017 Jan;4(1):16-28. doi: 10.15698/mic2017.01.552.
10
Yeast and Fungal Prions: Amyloid-Handling Systems, Amyloid Structure, and Prion Biology.
Adv Genet. 2016;93:191-236. doi: 10.1016/bs.adgen.2015.12.003. Epub 2016 Jan 22.

本文引用的文献

1
Regulation of chaperone effects on a yeast prion by cochaperone Sgt2.
Mol Cell Biol. 2012 Dec;32(24):4960-70. doi: 10.1128/MCB.00875-12. Epub 2012 Oct 8.
2
Hsp70 targets Hsp100 chaperones to substrates for protein disaggregation and prion fragmentation.
J Cell Biol. 2012 Aug 6;198(3):387-404. doi: 10.1083/jcb.201201074.
3
Prokaryotic chaperones support yeast prions and thermotolerance and define disaggregation machinery interactions.
Genetics. 2012 Sep;192(1):185-93. doi: 10.1534/genetics.112.142307. Epub 2012 Jun 25.
4
Differences in the curing of [PSI+] prion by various methods of Hsp104 inactivation.
PLoS One. 2012;7(6):e37692. doi: 10.1371/journal.pone.0037692. Epub 2012 Jun 18.
6
Species-specific collaboration of heat shock proteins (Hsp) 70 and 100 in thermotolerance and protein disaggregation.
Proc Natl Acad Sci U S A. 2011 Apr 26;108(17):6915-20. doi: 10.1073/pnas.1102828108. Epub 2011 Apr 7.
7
Function of cytosolic chaperones in Tom70-mediated mitochondrial import.
Protein Pept Lett. 2011 Feb;18(2):122-31. doi: 10.2174/092986611794475020.
8
Sti1 regulation of Hsp70 and Hsp90 is critical for curing of Saccharomyces cerevisiae [PSI+] prions by Hsp104.
Mol Cell Biol. 2010 Jul;30(14):3542-52. doi: 10.1128/MCB.01292-09. Epub 2010 May 17.
9
The Schizosaccharomyces pombe Hsp104 disaggregase is unable to propagate the [PSI] prion.
PLoS One. 2009 Sep 11;4(9):e6939. doi: 10.1371/journal.pone.0006939.
10
The number and transmission of [PSI] prion seeds (Propagons) in the yeast Saccharomyces cerevisiae.
PLoS One. 2009;4(3):e4670. doi: 10.1371/journal.pone.0004670. Epub 2009 Mar 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验