慢性乙型肝炎患者长期肝硬化和肝细胞癌风险的预测模型:整合宿主和病毒特征的风险评分。
Prediction models of long-term cirrhosis and hepatocellular carcinoma risk in chronic hepatitis B patients: risk scores integrating host and virus profiles.
机构信息
Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.
出版信息
Hepatology. 2013 Aug;58(2):546-54. doi: 10.1002/hep.26385.
UNLABELLED
Integrating host and HBV characteristics, this study aimed to develop models for predicting long-term cirrhosis and hepatocellular carcinoma (HCC) risk in chronic hepatitis B virus (HBV) patients. This analysis included hepatitis B surface antigen (HBsAg)-seropositive and anti-HCV-seronegative participants from the Risk Evaluation of Viral Load Elevation and Associated Liver Disease/Cancer in HBV (R.E.V.E.A.L.-HBV) cohort. Newly developed cirrhosis and HCC were ascertained through regular follow-up ultrasonography, computerized linkage with national health databases, and medical chart reviews. Two-thirds of the participants were allocated for risk model derivation and another one-third for model validation. The risk prediction model included age, gender, HBV e antigen (HBeAg) serostatus, serum levels of HBV DNA, and alanine aminotransferase (ALT), quantitative serum HBsAg levels, and HBV genotypes. Additionally, the family history was included in the prediction model for HCC. Cox's proportional hazards regression coefficients for cirrhosis and HCC predictors were converted into risk scores. The areas under receiver operating curve (AUROCs) were used to evaluate the performance of risk models. Elder age, male, HBeAg, genotype C, and increasing levels of ALT, HBV DNA, and HBsAg were all significantly associated with an increased risk of cirrhosis and HCC. The risk scores estimated from the derivation set could accurately categorize participants with low, medium, and high cirrhosis and HCC risk in the validation set (P<0.001). The AUROCs for predicting 3-year, 5-year, and 10-year cirrhosis risk ranged 0.83-0.86 and 0.79-0.82 for the derivation and validation sets, respectively. The AUROC for predicting 5-year, 10-year, 15-year risk of HCC ranged 0.86-0.89 and 0.84-0.87 in the derivation and validation sets, respectively.
CONCLUSION
The risk prediction models of cirrhosis and HCC by integrating host and HBV profiles have excellent prediction accuracy and discriminatory ability. They may be used for clinical management of chronic hepatitis B patients.
目的
本研究整合宿主和 HBV 特征,旨在建立预测慢性乙型肝炎病毒(HBV)患者长期肝硬化和肝细胞癌(HCC)风险的模型。本分析纳入了来自 HBV 病毒载量升高及其相关肝病/肝癌风险评估(R.E.V.E.A.L.-HBV)队列的 HBsAg 阳性和抗 HCV 阴性的参与者。通过定期超声随访、与国家健康数据库的计算机链接以及病历审查来确定新发生的肝硬化和 HCC。将三分之二的参与者分配用于风险模型推导,另外三分之一用于模型验证。风险预测模型包括年龄、性别、HBV e 抗原(HBeAg)血清状态、HBV DNA 血清水平和丙氨酸氨基转移酶(ALT)、定量血清 HBsAg 水平和 HBV 基因型。此外,家族史也被纳入 HCC 预测模型。肝硬化和 HCC 预测因子的 Cox 比例风险回归系数被转换为风险评分。接受者操作特征曲线(AUROC)下面积用于评估风险模型的性能。年龄较大、男性、HBeAg、基因型 C 以及 ALT、HBV DNA 和 HBsAg 水平升高均与肝硬化和 HCC 风险增加显著相关。从推导组估计的风险评分可以准确地将验证组中低、中、高肝硬化和 HCC 风险的参与者进行分类(P<0.001)。预测 3 年、5 年和 10 年肝硬化风险的 AUROCs 在推导和验证组中分别为 0.83-0.86 和 0.79-0.82。预测 5 年、10 年和 15 年 HCC 风险的 AUROC 在推导和验证组中分别为 0.86-0.89 和 0.84-0.87。
结论
整合宿主和 HBV 特征的肝硬化和 HCC 风险预测模型具有出色的预测准确性和区分能力。它们可用于慢性乙型肝炎患者的临床管理。