Suppr超能文献

肝癌筛查中自我评估及高危人群识别的预测模型与风险评分的开发:前瞻性队列研究

Development of a Prediction Model and Risk Score for Self-Assessment and High-Risk Population Identification in Liver Cancer Screening: Prospective Cohort Study.

作者信息

Li Xue, Wang Youqing, Li Huizhang, Wang Le, Zhu Juan, Yang Chen, Du Lingbin

机构信息

Department of Cancer Prevention, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, 1 East Banshan Road, Hangzhou, 310022, China, 86 571-88122219.

Department of Ultrasound, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China.

出版信息

JMIR Public Health Surveill. 2024 Dec 30;10:e65286. doi: 10.2196/65286.

Abstract

BACKGROUND

Liver cancer continues to pose a significant burden in China. To enhance the efficiency of screening, it is crucial to implement population stratification for liver cancer surveillance.

OBJECTIVE

This study aimed to develop a simple prediction model and risk score for liver cancer screening in the general population, with the goal of improving early detection and survival.

METHODS

This population-based cohort study focused on residents aged 40 to 74 years. Participants were enrolled between 2014 and 2019 and were prospectively followed until June 30, 2021. Data were collected through interviews at enrollment. A Cox proportional hazards regression was used to identify predictors and construct the prediction model. A risk score system was developed based on the weighted factors included in the prediction model.

RESULTS

A total of 153,082 study participants (67,586 males and 85,496 females) with a mean age of 55.86 years were included. During 781,125 person-years of follow-up (length of follow-up: median 6.07, IQR 3.07-7.09 years), 290 individuals were diagnosed with liver cancer. Key factors identified for the prediction model and risk score system included age (hazard ratio [HR] 1.06, 95% CI 1.04-1.08), sex (male: HR 3.41, 95% CI 2.44-4.78), education level (medium: HR 0.84, 95% CI 0.61-1.15; high: HR 0.37, 95% CI 0.17-0.78), cirrhosis (HR 11.93, 95% CI 7.46-19.09), diabetes (HR 1.59, 95% CI 1.08-2.34), and hepatitis B surface antigen (HBsAg) status (positive: HR 3.84, 95% CI 2.38-6.19; unknown: HR 1.04, 95% CI 0.73-1.49). The model exhibited excellent discrimination in both the development and validation sets, with areas under the curve (AUC) of 0.802, 0.812, and 0.791 for predicting liver cancer at the 1-, 3-, and 5-year periods in the development set and 0.751, 0.763, and 0.712 in the validation set, respectively. Sensitivity analyses applied to the subgroups of participants without cirrhosis and with a negative or unknown HBsAg status yielded similar performances, with AUCs ranging from 0.707 to 0.831. Calibration plots indicated an excellent agreement between the observed and predicted probabilities of developing liver cancer over the 1-, 3-, and 5-year periods. Compared to the low-risk group, participants in the high-risk and moderate-risk groups had 11.88-fold (95% CI 8.67-16.27) and 3.51-fold (95% CI 2.58-4.76) higher risks of liver cancer, respectively. Decision curve analysis demonstrated that the risk score provided a higher net benefit compared to the current strategy. To aid in risk stratification for individual participants, a user-friendly web-based scoring system was developed.

CONCLUSIONS

A straightforward liver cancer prediction model was created by incorporating easily accessible variables. This model enables the identification of asymptomatic individuals who should be prioritized for liver cancer screening.

摘要

背景

肝癌在中国仍然是一个重大负担。为提高筛查效率,对肝癌监测实施人群分层至关重要。

目的

本研究旨在为普通人群开发一种简单的肝癌筛查预测模型和风险评分,以提高早期发现率和生存率。

方法

这项基于人群的队列研究聚焦于40至74岁的居民。参与者于2014年至2019年入组,并前瞻性随访至2021年6月30日。通过入组时的访谈收集数据。使用Cox比例风险回归来识别预测因素并构建预测模型。基于预测模型中包含的加权因素开发了一个风险评分系统。

结果

共纳入153,082名研究参与者(男性67,586名,女性85,496名),平均年龄55.86岁。在781,125人年的随访期间(随访时长:中位数6.07,四分位间距3.07 - 7.09年),290人被诊断为肝癌。预测模型和风险评分系统确定的关键因素包括年龄(风险比[HR] 1.06,95%置信区间1.04 - 1.08)、性别(男性:HR 3.41,95%置信区间2.44 - 4.78)、教育水平(中等:HR 0.84,95%置信区间0.61 - 1.15;高:HR 0.37,95%置信区间0.17 - 0.78)、肝硬化(HR 11.93,95%置信区间7.46 - 19.09)、糖尿病(HR 1.59,95%置信区间1.08 - 2.34)以及乙肝表面抗原(HBsAg)状态(阳性:HR 3.84,95%置信区间2.38 - 6.19;未知:HR 1.04,95%置信区间0.73 - 1.49)。该模型在开发集和验证集中均表现出出色的区分能力,在开发集中预测1年、3年和5年肝癌的曲线下面积(AUC)分别为0.802、0.812和0.791,在验证集中分别为0.751、0.763和0.712。对无肝硬化且HBsAg状态为阴性或未知的参与者亚组进行的敏感性分析得出了类似的表现,AUC范围为0.707至0.831。校准图表明在1年、3年和5年期间观察到的和预测的患肝癌概率之间具有良好的一致性。与低风险组相比,高风险组和中等风险组的参与者患肝癌的风险分别高11.88倍(95%置信区间8.67 - 16.27)和3.51倍(95%置信区间2.58 - 4.76)。决策曲线分析表明,与当前策略相比,风险评分提供了更高的净效益。为帮助对个体参与者进行风险分层,开发了一个用户友好的基于网络的评分系统。

结论

通过纳入易于获取的变量创建了一个简单的肝癌预测模型。该模型能够识别出应优先进行肝癌筛查的无症状个体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ec8/11702484/b66cae7adf90/publichealth-v10-e65286-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验