Department of Environmental Engineering, Yonsei University, Wonju, Gangwon-do 220-710, South Korea.
Department of Environmental Engineering, Yonsei University, Wonju, Gangwon-do 220-710, South Korea ; Current address: Research Institute for Sustainable Environments, Ilshin Environmental Engineering Co., Ltd., Reclean Building 3rd Fl., 692-2 Jangji-dongSongpa-gu, Seoul 138-871, South Korea.
Biotechnol Biofuels. 2013 Mar 18;6:37. doi: 10.1186/1754-6834-6-37. eCollection 2013.
Microalgal biomass contains a high level of carbohydrates which can be biochemically converted to biofuels using state-of-the-art strategies that are almost always needed to employ a robust pretreatment on the biomass for enhanced energy production. In this study, we used an ultrasonic pretreatment to convert microalgal biomass (Scenedesmus obliquus YSW15) into feasible feedstock for microbial fermentation to produce ethanol and hydrogen. The effect of sonication condition was quantitatively evaluated with emphases on the characterization of carbohydrate components in microalgal suspension and on subsequent production of fermentative bioenergy.
Scenedesmus obliquus YSW15 was isolated from the effluent of a municipal wastewater treatment plant. The sonication durations of 0, 10, 15, and 60 min were examined under different temperatures at a fixed frequency and acoustic power resulted in morphologically different states of microalgal biomass lysis. Fermentation was performed to evaluate the bioenergy production from the non-sonicated and sonicated algal biomasses after pretreatment stage under both mesophilic (35°C) and thermophilic (55°C) conditions.
A 15 min sonication treatment significantly increased the concentration of dissolved carbohydrates (0.12 g g(-1)), which resulted in an increase of hydrogen/ethanol production through microbial fermentation. The bioconvertibility of microalgal biomass sonicated for 15 min or longer was comparable to starch as a control, indicating a high feasibility of using microalgae for fermentative bioenergy production. Increasing the sonication duration resulted in increases in both algal surface hydrophilicity and electrostatic repulsion among algal debris dispersed in aqueous solution. Scanning electron microscope images supported that ruptured algal cell allowed fermentative bacteria to access the inner space of the cell, evidencing an enhanced bioaccessibility. Sonication for 15 min was the best for fermentative bioenergy (hydrogen/ethanol) production from microalga, and the productivity was relatively higher for thermophilic (55°C) than mesophilic (35°C) condition.
These results demonstrate that more bioavailable carbohydrate components are produced through the ultrasonic degradation of microalgal biomass, and thus the process can provide a high quality source for fermentative bioenergy production.
微藻生物质含有高水平的碳水化合物,可通过最先进的策略进行生物化学转化为生物燃料,这些策略几乎总是需要对生物质进行强化预处理,以提高能源产量。在这项研究中,我们使用超声预处理将微藻生物质(斜生栅藻 YSW15)转化为可行的微生物发酵原料,以生产乙醇和氢气。通过定量评估超声处理条件,重点研究了微藻悬浮液中碳水化合物成分的特性及其对后续发酵生物能源生产的影响。
斜生栅藻 YSW15 从城市污水处理厂的污水中分离出来。在固定频率和声功率下,考察了超声处理时间为 0、10、15 和 60 min 时不同温度下的微藻生物质裂解的形态不同状态。在中温(35°C)和高温(55°C)条件下,对预处理后的非超声和超声藻生物质进行发酵,以评估生物能源的生产。
15 分钟的超声处理显著增加了溶解碳水化合物的浓度(0.12gg-1),这导致通过微生物发酵增加了氢气/乙醇的产量。超声处理 15 分钟或更长时间的微藻生物质的生物转化率与淀粉相当,表明使用微藻进行发酵生物能源生产具有很高的可行性。随着超声处理时间的延长,藻类表面的亲水性和分散在水溶液中的藻类碎片之间的静电斥力都增加了。扫描电子显微镜图像支持破裂的藻类细胞允许发酵细菌进入细胞的内部空间,证明了增强的生物可及性。15 分钟的超声处理是微藻发酵生物能源(氢气/乙醇)生产的最佳条件,在高温(55°C)条件下比中温(35°C)条件下的生产力相对更高。
这些结果表明,通过微藻生物质的超声降解产生了更多可利用的碳水化合物成分,因此该过程可为发酵生物能源生产提供高质量的原料。