文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

SL-6 模拟物是一种生物刺激素,可增强微藻提取物对植物的生物刺激作用。

SL-6 Mimic Is a Biostimulant for and Enhances the Plant Biostimulant Effect of Microalgal Extract.

作者信息

Popa Daria Gabriela, Tritean Naomi, Georgescu Florentina, Lupu Carmen, Shaposhnikov Sergey, Constantinescu-Aruxandei Diana, Oancea Florin

机构信息

Bioresource Department, Bioproducts Team, National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, Spl. Independentei Nr. 202, Sector 6, 060021 Bucharest, Romania.

Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Blvd. Marasti Nr. 59, Sector 1, 011464 Bucharest, Romania.

出版信息

Plants (Basel). 2025 Mar 24;14(7):1010. doi: 10.3390/plants14071010.


DOI:10.3390/plants14071010
PMID:40219078
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11990285/
Abstract

This study aimed to evaluate the impact of a more cost-efficient strigolactone mimic SL-6 on NIVA-CHL 176 growth in comparison with the strigolactone analog GR24 and the plant biostimulant functions of microalgal extracts. Three molar SL-6 concentrations were tested: 10 M, 10 M, and 10 M, respectively. Five parameters of microalgal growth were assessed: optical density, turbidity, biomass production, chlorophyll fluorescence, and pigment concentration. Results after 15 days of culturing revealed that the SL-6 treatments significantly enhanced biomass production (13.53% at 10 M), pigment synthesis, and photosystem II activity (14.38% at 10 M). The highest increases in pigments induced by SL-6 were 15.7% for chlorophyll (at 10 M SL-6), 12.87% for chlorophyll (at 10 M SL-6), 2.3% for carotenoids (at 10 M SL-6), and 10.78% for total pigments (at 10 M SL-6) per gram biomass compared to the solvent control (DMSO). Higher doses of GR24 and SL-6 (10 M) inhibited microalgal growth, reducing cell density, biomass production, and pigment synthesis. The microalgal extracts acted as plant biostimulants, stimulating root and shoot elongation and proton pump functioning of mung seedlings in the presence and absence of salt stress. The extracts from SL-6 biostimulated were more active as plant biostimulants than the extracts from the non-stimulated .

摘要

本研究旨在评估一种更具成本效益的独脚金内酯类似物SL-6与独脚金内酯类似物GR24相比,对NIVA-CHL 176生长的影响以及微藻提取物的植物生物刺激功能。测试了三种摩尔浓度的SL-6:分别为10⁻⁶M、10⁻⁷M和10⁻⁸M。评估了微藻生长的五个参数:光密度、浊度、生物量产量、叶绿素荧光和色素浓度。培养15天后的结果表明,SL-6处理显著提高了生物量产量(10⁻⁶M时提高了13.53%)、色素合成和光系统II活性(10⁻⁶M时提高了14.38%)。与溶剂对照(二甲基亚砜)相比,SL-6诱导的色素最高增加量为每克生物量中叶绿素a增加15.7%(在10⁻⁶M SL-6时)、叶绿素b增加12.87%(在10⁻⁶M SL-6时)、类胡萝卜素增加2.3%(在10⁻⁶M SL-6时)以及总色素增加10.78%(在10⁻⁶M SL-6时)。更高剂量的GR24和SL-6(10⁻⁵M)抑制了微藻生长,降低了细胞密度、生物量产量和色素合成。微藻提取物起到了植物生物刺激剂的作用,在有盐胁迫和无盐胁迫的情况下,均刺激了绿豆幼苗的根和茎伸长以及质子泵功能。经SL-6生物刺激的提取物作为植物生物刺激剂比未经刺激的提取物更具活性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2d40/11990285/d0a706c23322/plants-14-01010-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2d40/11990285/d1c24b25b689/plants-14-01010-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2d40/11990285/aa78a67eac2c/plants-14-01010-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2d40/11990285/e94a34ad5c62/plants-14-01010-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2d40/11990285/4b3da968ebeb/plants-14-01010-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2d40/11990285/228352189272/plants-14-01010-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2d40/11990285/a063e460b44b/plants-14-01010-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2d40/11990285/44b653060569/plants-14-01010-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2d40/11990285/fd487fc37e12/plants-14-01010-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2d40/11990285/d0a706c23322/plants-14-01010-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2d40/11990285/d1c24b25b689/plants-14-01010-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2d40/11990285/aa78a67eac2c/plants-14-01010-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2d40/11990285/e94a34ad5c62/plants-14-01010-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2d40/11990285/4b3da968ebeb/plants-14-01010-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2d40/11990285/228352189272/plants-14-01010-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2d40/11990285/a063e460b44b/plants-14-01010-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2d40/11990285/44b653060569/plants-14-01010-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2d40/11990285/fd487fc37e12/plants-14-01010-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2d40/11990285/d0a706c23322/plants-14-01010-g009.jpg

相似文献

[1]
SL-6 Mimic Is a Biostimulant for and Enhances the Plant Biostimulant Effect of Microalgal Extract.

Plants (Basel). 2025-3-24

[2]
Novel Strigolactone Mimics That Modulate Photosynthesis and Biomass Accumulation in .

Molecules. 2023-10-12

[3]
Stepwise processing of Chlorella sorokiniana confers plant biostimulant that reduces mineral fertilizer requirements.

Bioresour Technol. 2025-2

[4]
Physiological Effects and Mechanisms of as a Biostimulant on the Growth and Drought Tolerance of .

Plants (Basel). 2024-10-28

[5]
Enhanced growth of Chlorella sorokiniana on ash-enriched treated wastewater for large-scale lipid and chlorophyll a production using a hybrid raceway photobioreactor.

Environ Sci Pollut Res Int. 2025-5

[6]
Integrating Microalgal Biomass and Biorefinery Residues into Sustainable Agriculture and Food Production: Insights from Lettuce Cultivation.

Foods. 2025-2-26

[7]
A plant-derived biostimulant Aminolom Enzimatico® application stimulates chlorophyll content, electrolyte leakage, stomata density and root yield of radishes under salinity stress.

PeerJ. 2025-1-24

[8]
Cultivating Chlorella sorokiniana AK-1 with swine wastewater for simultaneous wastewater treatment and algal biomass production.

Bioresour Technol. 2020-1-20

[9]
Bio-refinery of Chlorella sorokiniana with pulsed electric field pre-treatment.

Bioresour Technol. 2020-1-7

[10]
Strigolactone and nitric oxide collaborate synergistically to boost tomato seedling resilience to arsenic toxicity via modulating physiology and antioxidant system.

Plant Physiol Biochem. 2024-2

本文引用的文献

[1]
Physiological Effects and Mechanisms of as a Biostimulant on the Growth and Drought Tolerance of .

Plants (Basel). 2024-10-28

[2]
Exogenous strigolactones alleviate low-temperature stress in peppers seedlings by reducing the degree of photoinhibition.

BMC Plant Biol. 2024-9-30

[3]
Nano-enabled microalgae bioremediation: Advances in sustainable pollutant removal and value-addition.

Environ Res. 2024-12-15

[4]
Advancements in sustainable production of biofuel by microalgae: Recent insights and future directions.

Environ Res. 2024-12-1

[5]
Regulatory mechanism of strigolactone in tall fescue to low-light stress.

Plant Physiol Biochem. 2024-10

[6]
The role of strigolactones in resistance to environmental stress in plants.

Physiol Plant. 2024

[7]
Mechanistic insights into the plant biostimulant activity of a novel formulation based on rice husk nanobiosilica embedded in a seed coating alginate film.

Front Plant Sci. 2024-5-21

[8]
Strigolactones shape the assembly of root-associated microbiota in response to phosphorus availability.

mSystems. 2024-6-18

[9]
Chemistry of Strigolactones, Key Players in Plant Communication.

Chembiochem. 2024-6-17

[10]
Plasma membrane H-ATPases in mineral nutrition and crop improvement.

Trends Plant Sci. 2024-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索