LISiN Laboratory, Department of Electronics and Telecommunications, Politecnico di Torino, Turin 10129, Italy.
IEEE Trans Biomed Eng. 2013 Aug;60(8):2242-52. doi: 10.1109/TBME.2013.2252346. Epub 2013 Mar 12.
A compact and portable system for real-time, multichannel, HD-sEMG acquisition is presented. The device is based on a modular, multiboard approach for scalability and to optimize power consumption for battery operating mode. The proposed modular approach allows us to configure the number of sEMG channels from 64 to 424. A plastic-optical-fiber-based 10/100 Ethernet link is implemented on a field-programmable gate array (FPGA)-based board for real-time, safety data transmission toward a personal computer or laptop for data storage and offline analysis. The high-performance A/D conversion stage, based on 24-bit ADC, allows us to automatically serialize the samples and transmits them on a single SPI bus connecting a sequence of up to 14 ADC chips in chain mode. The prototype is configured to work with 64 channels and a sample frequency of 2.441 ksps (derived from 25-MHz clock source), corresponding to a real data throughput of 3 Mbps. The prototype was assembled to demonstrate the available features (e.g., scalability) and evaluate the expected performances. The analog front end board could be dynamically configured to acquire sEMG signals in monopolar or single differential mode by means of FPGA I/O interface. The system can acquire continuously 64 channels for up to 5 h with a lightweight battery pack of 7.5 Vdc/2200 mAh. A PC-based application was also developed, by means of the open source Qt Development Kit from Nokia, for prototype characterization, sEMG measurements, and real-time visualization of 2-D maps.
本文提出了一种用于实时、多通道、高清-sEMG 采集的紧凑型便携式系统。该设备基于模块化多板方法,可实现可扩展性,并针对电池操作模式优化功耗。所提出的模块化方法允许我们将 sEMG 通道数量从 64 配置到 424。基于现场可编程门阵列 (FPGA) 的板上实现了基于塑料光纤的 10/100 以太网链路,用于实时、安全地将数据传输到个人计算机或笔记本电脑,以进行数据存储和离线分析。基于 24 位 ADC 的高性能 A/D 转换级允许我们自动对样本进行序列化,并通过连接多达 14 个 ADC 芯片的单个 SPI 总线将其传输,这些芯片以链式模式连接。该原型配置为使用 64 个通道和 2.441 ksps 的采样频率(源自 25 MHz 时钟源)工作,对应于 3 Mbps 的实际数据吞吐量。该原型已组装以展示可用功能(例如,可扩展性)并评估预期性能。模拟前端板可以通过 FPGA I/O 接口动态配置为单极或单差分模式采集 sEMG 信号。该系统可以使用 7.5 Vdc/2200 mAh 的轻型电池组连续采集 64 个通道长达 5 小时。还通过诺基亚的开源 Qt 开发套件开发了基于 PC 的应用程序,用于原型表征、sEMG 测量以及 2-D 地图的实时可视化。