Center for Nanochemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China.
Small. 2013 Apr 22;9(8):1373-8. doi: 10.1002/smll.201202978. Epub 2013 Mar 20.
The carrier transport in boron nitride-embedded graphene (BNG) is studied using density functional theory coupled with the Boltzmann transport equation. Under a phonon scattering mechanism, the intrinsic carrier mobility of BNG at room temperature is tunable from 1.7 × 10(3) to 1.1 × 10(5) cm(2) V(-1) s(-1) when the bandgap is between 0.38 and 1.39 eV. Some specific BNG materials even show ultrahigh mobility up to 6.6 × 10(6) cm(2) V(-1) s(-1) , and the transport polarity (whether it is electron or hole transport) can be tailored by the application of a uniaxial strain. The wide mobility variation of BNG is attributed to the dependence of the effective mass and the deformation potential constant on the carbon concentration and width. The results indicate that BNG can have both a large on-off ratio and high carrier mobility and is thus a promising material for electronic devices.
采用密度泛函理论结合玻尔兹曼输运方程研究了嵌入氮化硼的石墨烯(BNG)中的载流子输运。在声子散射机制下,当能带隙在 0.38 到 1.39 电子伏特之间时,BNG 的本征载流子迁移率在室温下可从 1.7×10^3 到 1.1×10^5 cm^2 V^-1 s^-1 可调。一些特定的 BNG 材料甚至表现出超高的迁移率,高达 6.6×10^6 cm^2 V^-1 s^-1,并且通过施加单轴应变可以调整传输极性(是电子还是空穴传输)。BNG 的宽迁移率变化归因于有效质量和变形势常数对碳浓度和宽度的依赖性。结果表明,BNG 可以具有大的开关比和高的载流子迁移率,因此是电子器件的有前途的材料。