Department of Neurology, Sapporo Yamanoue Hospital Sapporo, Japan ; Department of Physiology, Hokkaido University School of Medicine Sapporo, Japan.
Front Syst Neurosci. 2013 Mar 19;7:4. doi: 10.3389/fnsys.2013.00004. eCollection 2013.
Smooth-pursuit eye movements allow primates to track moving objects. Efficient pursuit requires appropriate target selection and predictive compensation for inherent processing delays. Prediction depends on expectation of future object motion, storage of motion information and use of extra-retinal mechanisms in addition to visual feedback. We present behavioral evidence of how cognitive processes are involved in predictive pursuit in normal humans and then describe neuronal responses in monkeys and behavioral responses in patients using a new technique to test these cognitive controls. The new technique examines the neural substrate of working memory and movement preparation for predictive pursuit by using a memory-based task in macaque monkeys trained to pursue (go) or not pursue (no-go) according to a go/no-go cue, in a direction based on memory of a previously presented visual motion display. Single-unit task-related neuronal activity was examined in medial superior temporal cortex (MST), supplementary eye fields (SEF), caudal frontal eye fields (FEF), cerebellar dorsal vermis lobules VI-VII, caudal fastigial nuclei (cFN), and floccular region. Neuronal activity reflecting working memory of visual motion direction and go/no-go selection was found predominantly in SEF, cerebellar dorsal vermis and cFN, whereas movement preparation related signals were found predominantly in caudal FEF and the same cerebellar areas. Chemical inactivation produced effects consistent with differences in signals represented in each area. When applied to patients with Parkinson's disease (PD), the task revealed deficits in movement preparation but not working memory. In contrast, patients with frontal cortical or cerebellar dysfunction had high error rates, suggesting impaired working memory. We show how neuronal activity may be explained by models of retinal and extra-retinal interaction in target selection and predictive control and thus aid understanding of underlying pathophysiology.
平滑追随眼动使灵长类动物能够跟踪移动的物体。有效的追随需要适当的目标选择和对固有处理延迟的预测性补偿。预测依赖于对未来物体运动的预期、运动信息的存储以及除视觉反馈之外额外视网膜机制的使用。我们提出了行为证据,说明认知过程如何参与正常人类的预测性追随,然后描述了猴子中的神经元反应和使用新技术测试这些认知控制的患者的行为反应。新技术通过使用基于记忆的任务来检查工作记忆和预测性追随的运动准备的神经基质,该任务在经过训练以根据Go/No-Go 线索根据先前呈现的视觉运动显示的记忆在一个方向上进行追踪(Go)或不追踪(No-Go)的猕猴中进行。在中颞上皮质(MST)、辅助眼区(SEF)、额后眼区(FEF)、小脑背侧蚓状叶 VI-VII、小脑后fastigial 核(cFN)和绒球区检查了与任务相关的单个单位神经元活动。发现反映视觉运动方向和 Go/No-Go 选择的工作记忆的神经元活动主要在 SEF、小脑背侧蚓状叶和 cFN 中,而与运动准备相关的信号主要在额后 FEF 和相同的小脑区域中。化学失活产生的效果与每个区域中代表的信号差异一致。当应用于帕金森病(PD)患者时,该任务显示运动准备缺陷而不是工作记忆缺陷。相比之下,额皮质或小脑功能障碍的患者错误率很高,这表明工作记忆受损。我们展示了神经元活动如何通过目标选择和预测性控制中的视网膜和额外视网膜相互作用的模型来解释,从而有助于理解潜在的病理生理学。