Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84132, USA.
J Neurosci. 2013 Mar 20;33(12):5285-300. doi: 10.1523/JNEUROSCI.4824-12.2013.
Understanding central processing requires precise monitoring of neural activity across populations of identified neurons in the intact brain. In the present study, we used recently optimized variants of the genetically encoded calcium sensor GCaMP (GCaMP3 and GCaMPG5G) to image activity among genetically and anatomically defined neuronal populations in the olfactory bulb (OB), including two types of GABAergic interneurons (periglomerular [PG] and short axon [SA] cells) and OB output neurons (mitral/tufted [MT] cells) projecting to the piriform cortex. We first established that changes in neuronal spiking can be related accurately to GCaMP fluorescence changes via a simple quantitative relationship over a large dynamic range. We next used in vivo two-photon imaging from individual neurons and epifluorescence signals reflecting population-level activity to investigate the spatiotemporal representation of odorants across these neuron types in anesthetized and awake mice. Under anesthesia, individual PG and SA cells showed temporally simple responses and little spontaneous activity, whereas MT cells were spontaneously active and showed diverse temporal responses. At the population level, response patterns of PG, SA, and MT cells were surprisingly similar to those imaged from sensory inputs, with shared odorant-specific topography across the dorsal OB and inhalation-coupled temporal dynamics. During wakefulness, PG and SA cell responses increased in magnitude but remained temporally simple, whereas those of MT cells changed to complex spatiotemporal patterns reflecting restricted excitation and widespread inhibition. These results suggest multiple circuit elements with distinct roles in transforming odor representations in the OB and provide a framework for further study of early olfactory processing using optical and genetic tools.
理解中枢处理过程需要精确监测完整大脑中已识别神经元群体的神经活动。在本研究中,我们使用了最近优化的基因编码钙传感器 GCaMP(GCaMP3 和 GCaMPG5G)的变体,以对嗅球(OB)中遗传和解剖定义的神经元群体的活动进行成像,包括两种 GABA 能中间神经元(肾小球旁[PG]和短轴[SA]细胞)和 OB 输出神经元(投射到梨状皮层的僧帽/发状细胞[MT]细胞)。我们首先通过一个简单的定量关系在很大的动态范围内准确地将神经元放电的变化与 GCaMP 荧光变化相关联。接下来,我们使用来自单个神经元的体内双光子成像和反映群体水平活动的荧光信号,在麻醉和清醒的小鼠中研究这些神经元类型对气味的时空表示。在麻醉状态下,单个 PG 和 SA 细胞表现出时间简单的反应和很少的自发活动,而 MT 细胞则自发活跃并表现出多样的时间反应。在群体水平上,PG、SA 和 MT 细胞的反应模式与从感觉输入中成像的模式惊人地相似,在整个背 OB 上具有共享的特定气味拓扑结构和吸入耦合的时间动态。在清醒状态下,PG 和 SA 细胞的反应幅度增加,但仍然时间简单,而 MT 细胞的反应则变为反映受限兴奋和广泛抑制的复杂时空模式。这些结果表明,OB 中存在多个具有不同作用的电路元件,用于转换气味表示,并为使用光学和遗传工具进一步研究早期嗅觉处理提供了框架。