Suppr超能文献

CRISPR 介导免疫的噬菌体和细菌的种群和进化动态。

The population and evolutionary dynamics of phage and bacteria with CRISPR-mediated immunity.

机构信息

Department of Biology, Emory University, Atlanta, Georgia, United States of America.

出版信息

PLoS Genet. 2013;9(3):e1003312. doi: 10.1371/journal.pgen.1003312. Epub 2013 Mar 14.

Abstract

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR), together with associated genes (cas), form the CRISPR-cas adaptive immune system, which can provide resistance to viruses and plasmids in bacteria and archaea. Here, we use mathematical models, population dynamic experiments, and DNA sequence analyses to investigate the host-phage interactions in a model CRISPR-cas system, Streptococcus thermophilus DGCC7710 and its virulent phage 2972. At the molecular level, the bacteriophage-immune mutant bacteria (BIMs) and CRISPR-escape mutant phage (CEMs) obtained in this study are consistent with those anticipated from an iterative model of this adaptive immune system: resistance by the addition of novel spacers and phage evasion of resistance by mutation in matching sequences or flanking motifs. While CRISPR BIMs were readily isolated and CEMs generated at high rates (frequencies in excess of 10(-6)), our population studies indicate that there is more to the dynamics of phage-host interactions and the establishment of a BIM-CEM arms race than predicted from existing assumptions about phage infection and CRISPR-cas immunity. Among the unanticipated observations are: (i) the invasion of phage into populations of BIMs resistant by the acquisition of one (but not two) spacers, (ii) the survival of sensitive bacteria despite the presence of high densities of phage, and (iii) the maintenance of phage-limited communities due to the failure of even two-spacer BIMs to become established in populations with wild-type bacteria and phage. We attribute (i) to incomplete resistance of single-spacer BIMs. Based on the results of additional modeling and experiments, we postulate that (ii) and (iii) can be attributed to the phage infection-associated production of enzymes or other compounds that induce phenotypic phage resistance in sensitive bacteria and kill resistant BIMs. We present evidence in support of these hypotheses and discuss the implications of these results for the ecology and (co)evolution of bacteria and phage.

摘要

成簇规律间隔短回文重复序列 (CRISPR) 及其相关基因 (cas) 形成了 CRISPR-Cas 适应性免疫系统,该系统可以为细菌和古菌提供针对病毒和质粒的抗性。在这里,我们使用数学模型、种群动态实验和 DNA 序列分析来研究模型 CRISPR-Cas 系统中链球菌热球菌 DGCC7710 及其毒性噬菌体 2972 的宿主-噬菌体相互作用。在分子水平上,本研究中获得的噬菌体免疫突变细菌 (BIMs) 和 CRISPR 逃逸突变噬菌体 (CEMs) 与该适应性免疫系统迭代模型所预期的一致:通过添加新间隔序列抵抗噬菌体,通过在匹配序列或侧翼基序中突变逃避噬菌体抗性。虽然 CRISPR BIMs 很容易被分离出来,CEMs 的产生频率也很高(超过 10(-6)),但我们的种群研究表明,噬菌体-宿主相互作用的动态以及 BIM-CEM 军备竞赛的建立比现有关于噬菌体感染和 CRISPR-Cas 免疫的假设所预测的要复杂得多。其中一些意外的观察结果包括:(i) 噬菌体入侵对通过获得一个(而不是两个)间隔序列而具有抗性的 BIM 种群,(ii) 尽管存在高密度的噬菌体,但敏感细菌仍能存活,以及 (iii) 由于即使是具有两个间隔序列的 BIM 也无法在具有野生型细菌和噬菌体的种群中建立,因此噬菌体限制了群落的维持。我们将 (i) 归因于单间隔 BIM 的不完全抗性。基于额外建模和实验的结果,我们假设 (ii) 和 (iii) 可以归因于噬菌体感染相关酶或其他化合物的产生,这些酶或其他化合物诱导敏感细菌产生表型噬菌体抗性并杀死抗性 BIMs。我们提出了支持这些假设的证据,并讨论了这些结果对细菌和噬菌体的生态学和(共同)进化的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6139/3597502/754423b2a504/pgen.1003312.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验