Bayley P M, Schilstra M J, Martin S R
Division of Physical Biochemistry, National Institute for Medical Research, Mill Hill, London, England.
J Cell Sci. 1990 Jan;95 ( Pt 1):33-48. doi: 10.1242/jcs.95.1.33.
We present a numerical formulation for the dynamic instability of microtubules involving the stabilisation of growing microtubules by a single layer of tubulin-GTP, with GTP hydrolysis effectively coupled to tubulin-GTP addition. This Lateral Cap model provides a readily visualised, working mechanism for the co-existence and interconversion of growing and shrinking microtubules. This class of model is specified in terms of a hydrolysis rule, whereby the addition of tubulin-GTP causes hydrolysis of GTP on a previously terminal tubulin-GTP molecule as it becomes incorporated into the microtubule lattice. A specific formulation is illustrated, though this is not unique. A limited set of parameters defines the kinetics and affinity for tubulin-GTP at the binding sites at a given end of the microtubule. The rate constants are a function of the nucleotide composition of the binding site, principally comprising the two tubulin molecules, which interact laterally and longitudinally with the incoming tubulin-GTP molecule. The Lateral Cap formulation demonstrates that a single terminal layer of tubulin-GTP is sufficient to reproduce the apparently complex behaviour of a dynamic population of microtubules. It differs significantly from the fluctuating tubulin-GTP cap model of Chen and Hill (1985). It gives a molecular description to the switching of individual microtubules between growing and shrinking states in terms of the composition of the multi-start terminal layer of the microtubule, and provides a general mechanism for the differential kinetic behaviour at opposite ends of dynamic microtubules. It reproduces the essential features of microtubule length excursions, and predicts detailed characteristics of microtubule dynamics, including the basis of the apparently cooperative nature of the transition behaviour as a function of the concentration of tubulin-GTP. It is readily amenable to further experimental test and refinement.
我们提出了一种用于微管动态不稳定性的数值公式,该公式涉及单层微管蛋白 - GTP对生长中的微管的稳定作用,其中GTP水解与微管蛋白 - GTP添加有效耦合。这种侧帽模型为生长和收缩微管的共存及相互转换提供了一种易于可视化的工作机制。这类模型是根据水解规则来定义的,即微管蛋白 - GTP的添加会导致先前末端的微管蛋白 - GTP分子在并入微管晶格时发生GTP水解。文中给出了一个具体的公式示例,不过这并非唯一的。一组有限的参数定义了微管给定末端结合位点处微管蛋白 - GTP的动力学和亲和力。速率常数是结合位点核苷酸组成的函数,主要由两个微管蛋白分子组成,它们与进入的微管蛋白 - GTP分子发生横向和纵向相互作用。侧帽公式表明,单层微管蛋白 - GTP末端足以重现动态微管群体看似复杂的行为。它与Chen和Hill(1985)的波动微管蛋白 - GTP帽模型有显著不同。它根据微管多起始末端层的组成,对单个微管在生长和收缩状态之间的转换给出了分子层面的描述,并为动态微管相对两端的差异动力学行为提供了一种通用机制。它重现了微管长度波动的基本特征,并预测了微管动力学的详细特征,包括转变行为明显的协同性质作为微管蛋白 - GTP浓度函数的基础。它很容易接受进一步的实验测试和完善。