Suppr超能文献

一种从群体活动中确定神经表示维数的多元方法。

A multivariate method to determine the dimensionality of neural representation from population activity.

机构信息

Institute of Cognitive Neuroscience, University College London, UK.

出版信息

Neuroimage. 2013 Aug 1;76:225-35. doi: 10.1016/j.neuroimage.2013.02.062. Epub 2013 Mar 22.

Abstract

How do populations of neurons represent a variable of interest? The notion of feature spaces is a useful concept to approach this question: According to this model, the activation patterns across a neuronal population are composed of different pattern components. The strength of each of these components varies with one latent feature, which together are the dimensions along which the population represents the variable. Here we propose a new method to determine the number of feature dimensions that best describes the activation patterns. The method is based on Gaussian linear classifiers that use only the first d most important pattern dimensions. Using cross-validation, we can identify the classifier that best matches the dimensionality of the neuronal representation. We test this method on two datasets of motor cortical activation patterns measured with functional magnetic resonance imaging (fMRI), during (i) simultaneous presses of all fingers of a hand at different force levels and (ii) presses of different individual fingers at a single force level. As expected, the new method shows that the representation of force is low-dimensional; the neural activation for different force levels is scaled versions of each other. In comparison, individual finger presses are represented in a full, four-dimensional feature space. The approach can be used to determine an important characteristic of neuronal population codes without knowing the form of the underlying features. It therefore provides a novel tool in the building of quantitative models of neuronal population activity as measured with fMRI or other approaches.

摘要

神经元群体如何表示感兴趣的变量?特征空间的概念是解决这个问题的有用概念:根据这个模型,神经元群体的激活模式由不同的模式成分组成。这些成分中的每一个的强度都随一个潜在特征而变化,这些特征共同构成了群体表示变量的维度。在这里,我们提出了一种新的方法来确定最佳描述激活模式的特征维度数量。该方法基于仅使用前 d 个最重要的模式维度的高斯线性分类器。使用交叉验证,我们可以确定最匹配神经元表示维度的分类器。我们在两个使用功能磁共振成像(fMRI)测量的运动皮层激活模式数据集上测试了这种方法,分别是 (i) 手的所有手指在不同力水平下同时按压,和 (ii) 单个力水平下不同手指的按压。正如预期的那样,新方法表明力的表示是低维的;不同力水平的神经激活是彼此的比例缩放版本。相比之下,单个手指按压则以完整的四维特征空间表示。该方法可用于确定神经元群体编码的重要特征,而无需了解潜在特征的形式。因此,它为使用 fMRI 或其他方法测量的神经元群体活动的定量模型构建提供了一种新工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75a3/3682191/c606e6d41f75/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验