Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
Biotechnol Adv. 2013 Nov;31(6):851-61. doi: 10.1016/j.biotechadv.2013.03.004. Epub 2013 Mar 21.
Efficient and rapid fermentation of all sugars present in cellulosic hydrolysates is essential for economic conversion of renewable biomass into fuels and chemicals. Xylose is one of the most abundant sugars in cellulosic biomass but it cannot be utilized by wild type Saccharomyces cerevisiae, which has been used for industrial ethanol production. Therefore, numerous technologies for strain development have been employed to engineer S. cerevisiae capable of fermenting xylose rapidly and efficiently. These include i) optimization of xylose-assimilating pathways, ii) perturbation of gene targets for reconfiguring yeast metabolism, and iii) simultaneous co-fermentation of xylose and cellobiose. In addition, the genetic and physiological background of host strains is an important determinant to construct efficient and rapid xylose-fermenting S. cerevisiae. Vibrant and persistent researches in this field for the last two decades not only led to the development of engineered S. cerevisiae strains ready for industrial fermentation of cellulosic hydrolysates, but also deepened our understanding of operational principles underlying yeast metabolism.
高效快速地发酵纤维素水解物中的所有糖对于将可再生生物质经济转化为燃料和化学品至关重要。木糖是纤维素生物质中最丰富的糖之一,但不能被用于工业乙醇生产的野生型酿酒酵母利用。因此,人们采用了许多菌株开发技术来构建能够快速高效发酵木糖的酿酒酵母。这些技术包括:i)优化木糖同化途径,ii)干扰基因靶点以重新配置酵母代谢,以及 iii)同时共发酵木糖和纤维二糖。此外,宿主菌株的遗传和生理背景是构建高效快速木糖发酵酿酒酵母的重要决定因素。在过去二十年中,该领域的蓬勃发展和持续研究不仅导致了可用于纤维素水解物工业发酵的工程化酿酒酵母菌株的发展,还加深了我们对酵母代谢基本原理的理解。