Suppr超能文献

sp2 C-H 键在水中的活化和催化交叉偶联反应。

sp2 C-H bond activation in water and catalytic cross-coupling reactions.

机构信息

UMR 6226 CNRS-Université Rennes1, Institut des Sciences Chimiques de Rennes, Centre of Catalysis and Green Chemistry-Organometallics, Materials and Catalysis, 35042 Rennes, France.

出版信息

Chem Soc Rev. 2013 Jul 7;42(13):5744-67. doi: 10.1039/c3cs60020c.

Abstract

The metal-catalysed successive activation and functionalisation of sp(2) C-H bonds is the at heart of synthetic innovations for the development of C-C bond cross-coupling processes. Against expectation catalytic C-H bond transformations can be performed in water as an available, renewable, safe solvent but most importantly as a partner improving the catalyst activity. The objective of the review is to present the catalytic successes for C-H bond transformations in water, discovered mainly during the last six years and involving mostly palladium and ruthenium catalysts, often with the help of a carboxylate partner for the initial key C-H bond deprotonation. Water is beneficial for the direct catalytic arylation with (hetero)aryl halides of functional arene ortho C-H bonds with pyridine, pyrazole, oxazoline, imine, urea, amide… directing groups leading to functional biaryl derivatives, polyheterocycles and polydentate ligands. Metal-catalysed activation of the sp(2) C-H bond in water also allows the cross-coupling reaction of two different C-H bonds in the presence of an oxidant and regioselective alkenylations of arenes, heterocycles and functional alkenes are now controlled. Annulation reactions via insertion of alkynes into both activated C-H and heteroatom-hydrogen bonds in water constitute new routes to heterocycles.

摘要

金属催化的 sp(2) C-H 键的连续活化和功能化是开发 C-C 键交叉偶联反应的合成创新的核心。出乎意料的是,催化 C-H 键转化可以在水中进行,水是一种可用的、可再生的、安全的溶剂,但最重要的是,它可以作为一种提高催化剂活性的伴侣。本综述的目的是介绍过去六年中主要发现的涉及钯和钌催化剂的水中 C-H 键转化的催化成功案例,这些反应通常在初始关键 C-H 键去质子化时需要羧酸盐伴侣的帮助。水有利于直接催化芳基卤代物与吡啶、吡唑、恶唑啉、亚胺、脲、酰胺……等功能芳基邻位 C-H 键的芳基化反应,生成功能联芳基衍生物、多杂环和多齿配体。在氧化剂存在下,sp(2) C-H 键在水中的金属催化活化也允许两种不同 C-H 键的交叉偶联反应,并且现在可以控制芳基、杂环和功能烯烃的区域选择性烯丙基化。通过将炔烃插入水中的活化 C-H 和杂原子-氢键中的环化反应构成了杂环的新途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验