Department of Anaesthesiology, Klinikum der Universität München, Marchioninistr. 15, 81377, Munich, Germany,
J Clin Monit Comput. 2013 Oct;27(5):509-16. doi: 10.1007/s10877-013-9452-7. Epub 2013 Mar 23.
Real-time measurement of propofol in the breath may be used for routine clinical monitoring. However, this requires unequivocal identification of the expiratory phase of the respiratory propofol signal as only expiratory propofol reflects propofol blood concentrations. Determination of CO2 breath concentrations is the current gold standard for the identification of expiratory gas but usually requires additional equipment. Human breath also contains isoprene, a volatile organic compound with low inspiratory breath concentration and an expiratory concentration plateau. We investigated whether breath isoprene could be used similarly to CO2 to identify the expiratory fraction of the propofol breath signal. We investigated real-time breath data obtained from 40 study subjects during routine anesthesia. Propofol, isoprene, and CO2 breath concentrations were determined by a combined ion molecule reaction/electron impact mass spectrometry system. The expiratory propofol signal was identified according to breath CO2 and isoprene concentrations and presented as median of intervals of 30 s duration. Bland-Altman analysis was applied to detect differences (bias) in the expiratory propofol signal extracted by the two identification methods. We investigated propofol signals in a total of 3,590 observation intervals of 30 s duration in the 40 study subjects. In 51.4 % of the intervals (1,844/3,590) both methods extracted the same results for expiratory propofol signal. Overall bias between the two data extraction methods was -0.12 ppb. The lower and the upper limits of the 95 % CI were -0.69 and 0.45 ppb. Determination of isoprene breath concentrations allows the identification of the expiratory propofol signal during real-time breath monitoring.
实时测量呼出气中的异丙酚,可用于常规临床监测。然而,这需要明确识别呼吸性异丙酚信号的呼气相,因为只有呼气性异丙酚才能反映异丙酚的血液浓度。CO2 呼气浓度的测定是目前识别呼气气的金标准,但通常需要额外的设备。人体呼气中还含有异戊二烯,一种挥发性有机化合物,吸气时的呼气浓度较低,呼气浓度达到平台期。我们研究了呼出气中的异戊二烯是否可以类似 CO2 用于识别异丙酚呼出气信号的呼气分数。我们研究了 40 名研究对象在常规麻醉期间实时呼出气数据。通过离子分子反应/电子冲击质谱联用系统测定异丙酚、异戊二烯和 CO2 的呼出气浓度。根据 CO2 和异戊二烯浓度来识别呼气性异丙酚信号,并以 30 秒持续时间的间隔中位数呈现。Bland-Altman 分析用于检测两种识别方法提取的呼气性异丙酚信号的差异(偏差)。我们在 40 名研究对象的 3,590 个 30 秒持续时间的观察间隔中研究了异丙酚信号。在 51.4%的间隔(1,844/3,590)中,两种方法提取的呼气性异丙酚信号相同。两种数据提取方法之间的总体偏差为-0.12ppb。95%CI 的下限和上限分别为-0.69 和 0.45ppb。测定异戊二烯的呼出气浓度可以在实时呼出气监测中识别呼气性异丙酚信号。