Suppr超能文献

多元模式分类揭示了离散情绪的自主和体验表现。

Multivariate pattern classification reveals autonomic and experiential representations of discrete emotions.

机构信息

Center for Cognitive Neuroscience, Department of Psychology and Neuroscience, Duke University, Durham, NC 27708-0999, USA.

出版信息

Emotion. 2013 Aug;13(4):681-90. doi: 10.1037/a0031820. Epub 2013 Mar 25.

Abstract

Defining the structural organization of emotions is a central unresolved question in affective science. In particular, the extent to which autonomic nervous system activity signifies distinct affective states remains controversial. Most prior research on this topic has used univariate statistical approaches in attempts to classify emotions from psychophysiological data. In the present study, electrodermal, cardiac, respiratory, and gastric activity, as well as self-report measures were taken from healthy subjects during the experience of fear, anger, sadness, surprise, contentment, and amusement in response to film and music clips. Information pertaining to affective states present in these response patterns was analyzed using multivariate pattern classification techniques. Overall accuracy for classifying distinct affective states was 58.0% for autonomic measures and 88.2% for self-report measures, both of which were significantly above chance. Further, examining the error distribution of classifiers revealed that the dimensions of valence and arousal selectively contributed to decoding emotional states from self-report, whereas a categorical configuration of affective space was evident in both self-report and autonomic measures. Taken together, these findings extend recent multivariate approaches to study emotion and indicate that pattern classification tools may improve upon univariate approaches to reveal the underlying structure of emotional experience and physiological expression.

摘要

定义情绪的结构组织是情感科学中一个未解决的核心问题。特别是,自主神经系统活动是否代表不同的情感状态仍然存在争议。关于这个主题的大多数先前研究都使用了单变量统计方法,试图从心理生理学数据中对情绪进行分类。在本研究中,健康受试者在观看电影和音乐片段时经历恐惧、愤怒、悲伤、惊讶、满足和愉悦,同时记录皮肤电、心脏、呼吸和胃活动以及自我报告的测量数据。使用多变量模式分类技术分析这些反应模式中存在的情感状态信息。自主测量的分类准确率为 58.0%,自我报告的分类准确率为 88.2%,均显著高于随机水平。此外,检查分类器的误差分布表明,效价和唤醒维度分别有助于从自我报告中解码情绪状态,而自主测量和自我报告中都存在情感空间的分类配置。总的来说,这些发现扩展了最近的多变量方法来研究情绪,并表明模式分类工具可能会改进单变量方法,以揭示情感体验和生理表达的潜在结构。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4327/3745776/fafe92d1e9c3/nihms-487471-f0001.jpg

相似文献

4
The psychophysiology of mixed emotional states.混合情绪状态的心理生理学。
Psychophysiology. 2013 Aug;50(8):799-811. doi: 10.1111/psyp.12064. Epub 2013 Jun 3.
5
Gastric myoelectrical activity as an index of emotional arousal.胃肌电活动作为情绪唤醒的一个指标。
Int J Psychophysiol. 2006 Jul;61(1):70-6. doi: 10.1016/j.ijpsycho.2005.10.019. Epub 2006 Jan 3.
10
Basic emotions are associated with distinct patterns of cardiorespiratory activity.基本情绪与心肺活动的不同模式相关联。
Int J Psychophysiol. 2006 Jul;61(1):5-18. doi: 10.1016/j.ijpsycho.2005.10.024. Epub 2006 Jan 24.

引用本文的文献

1
Cerebral topographies of perceived and felt emotions.感知情绪和感受情绪的脑地形图。
Imaging Neurosci (Camb). 2025 Mar 27;3. doi: 10.1162/imag_a_00517. eCollection 2025.
3
The Theory of Constructed Emotion: More Than a Feeling.建构情绪理论:不止是一种感觉。
Perspect Psychol Sci. 2025 May;20(3):392-420. doi: 10.1177/17456916251319045. Epub 2025 May 13.
8
The Future of Affective Science: Introduction to the Special Issue.情感科学的未来:特刊引言
Affect Sci. 2023 Sep 12;4(3):429-442. doi: 10.1007/s42761-023-00220-2. eCollection 2023 Sep.

本文引用的文献

1
2
Are Emotions Natural Kinds?情绪是自然种类吗?
Perspect Psychol Sci. 2006 Mar;1(1):28-58. doi: 10.1111/j.1745-6916.2006.00003.x.
3
The brain basis of emotion: a meta-analytic review.情绪的大脑基础:一项荟萃分析综述。
Behav Brain Sci. 2012 Jun;35(3):121-43. doi: 10.1017/S0140525X11000446.
5
The embodiment of emotional feelings in the brain.大脑中情感感受的体现。
J Neurosci. 2010 Sep 22;30(38):12878-84. doi: 10.1523/JNEUROSCI.1725-10.2010.
8
A comparison of methods for multiclass support vector machines.多类支持向量机方法的比较
IEEE Trans Neural Netw. 2002;13(2):415-25. doi: 10.1109/72.991427.
10
Heart rate variability: a review.心率变异性:综述
Med Biol Eng Comput. 2006 Dec;44(12):1031-51. doi: 10.1007/s11517-006-0119-0. Epub 2006 Nov 17.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验