Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA.
IEEE Trans Med Imaging. 2013 May;32(5):957-67. doi: 10.1109/TMI.2013.2252913. Epub 2013 Mar 15.
The processing speed for positron emission tomography (PET) image reconstruction has been greatly improved in recent years by simply dividing the workload to multiple processors of a graphics processing unit (GPU). However, if this strategy is generalized to a multi-GPU cluster, the processing speed does not improve linearly with the number of GPUs. This is because large data transfer is required between the GPUs after each iteration, effectively reducing the parallelism. This paper proposes a novel approach to reformulate the maximum likelihood expectation maximization (MLEM) algorithm so that it can scale up to many GPU nodes with less frequent inter-node communication. While being mathematically different, the new algorithm maximizes the same convex likelihood function as MLEM, thus converges to the same solution. Experiments on a multi-GPU cluster demonstrate the effectiveness of the proposed approach.
近年来,通过将工作量分配到图形处理单元(GPU)的多个处理器上,正电子发射断层扫描(PET)图像重建的处理速度得到了极大的提高。然而,如果将这种策略推广到多 GPU 集群,那么处理速度并不会随着 GPU 数量的增加而呈线性提高。这是因为在每次迭代后,GPU 之间需要进行大量的数据传输,从而有效地降低了并行性。本文提出了一种新的方法来重新构建最大似然期望最大化(MLEM)算法,以便在具有较少节点间通信的情况下扩展到多个 GPU 节点。虽然在数学上有所不同,但新算法最大化了与 MLEM 相同的凸似然函数,因此会收敛到相同的解。在多 GPU 集群上的实验证明了所提出方法的有效性。