Suppr超能文献

PARALLELPROJ——一种用于断层扫描投影快速计算的开源框架。

PARALLELPROJ-an open-source framework for fast calculation of projections in tomography.

作者信息

Schramm Georg, Thielemans Kris

机构信息

Department of Imaging and Pathology, Division of Nuclear Medicine, KU Leuven, Leuven, Belgium.

Institute of Nuclear Medicine, University College London, London, United Kingdom.

出版信息

Front Nucl Med. 2024 Jan 8;3:1324562. doi: 10.3389/fnume.2023.1324562. eCollection 2023.

Abstract

In this article, we introduce parallelproj, a novel open-source framework designed for efficient parallel computation of projections in tomography leveraging either multiple CPU cores or GPUs. This framework efficiently implements forward and back projection functions for both sinogram and listmode data, utilizing Joseph's method, which is further extended to encompass time-of-flight (TOF) PET projections. Our evaluation involves a series of tests focusing on PET image reconstruction using data sourced from a state-of-the-art clinical PET/CT system. We thoroughly benchmark the performance of the projectors in non-TOF and TOF, sinogram, and listmode employing multi CPU-cores, hybrid CPU/GPU, and exclusive GPU mode. Moreover, we also investigate the timing of non-TOF sinogram projections calculated in STIR (Software for Tomographic Image Reconstruction) which recently integrated parallelproj as one of its projection backends. Our results indicate that the exclusive GPU mode provides acceleration factors between 25 and 68 relative to the multi-CPU-core mode. Furthermore, we demonstrate that OSEM listmode reconstruction of state-of-the-art real-world PET data sets is achievable within a few seconds using a single consumer GPU.

摘要

在本文中,我们介绍了parallelproj,这是一个新颖的开源框架,旨在利用多个CPU核心或GPU高效地并行计算断层扫描中的投影。该框架利用约瑟夫方法有效地实现了针对正弦图和列表模式数据的前向和后向投影函数,该方法进一步扩展以涵盖飞行时间(TOF)PET投影。我们的评估包括一系列测试,重点是使用来自最先进的临床PET/CT系统的数据进行PET图像重建。我们在非TOF和TOF、正弦图和列表模式下,采用多CPU核心、混合CPU/GPU和专用GPU模式,对投影仪的性能进行了全面的基准测试。此外,我们还研究了在最近将parallelproj作为其投影后端之一集成的STIR(断层图像重建软件)中计算的非TOF正弦图投影的计时。我们的结果表明,相对于多CPU核心模式,专用GPU模式提供了25到68之间的加速因子。此外,我们证明了使用单个消费级GPU可以在几秒钟内实现对最先进的真实世界PET数据集的OSEM列表模式重建。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8db4/11440996/8576cdc5f22d/fnume-03-1324562-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验