Suppr超能文献

豆蔻酸衍生的 d16:0 神经酰胺构成具有独特合成途径和功能特性的心脏神经酰胺库。

Myristate-derived d16:0 sphingolipids constitute a cardiac sphingolipid pool with distinct synthetic routes and functional properties.

机构信息

Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29403, USA.

出版信息

J Biol Chem. 2013 May 10;288(19):13397-409. doi: 10.1074/jbc.M112.428185. Epub 2013 Mar 25.

Abstract

BACKGROUND

Myristate is a novel potential substrate for sphingoid base synthesis.

RESULTS

Myocardial sphingoid base synthesis utilizes myristate; these sphingolipids are functionally non-redundant with canonical sphingoid bases.

CONCLUSION

d16:0 and d16:1 sphingolipids constitute an appreciable proportion of cardiac dihydrosphingosine and dihydroceramide, with distinct biological roles.

SIGNIFICANCE

This pool of sphingolipids may play a heretofore unsuspected role in myocardial pathology or protection. The enzyme serine palmitoyltransferase (SPT) catalyzes the formation of the sphingoid base "backbone" from which all sphingolipids are derived. Previous studies have shown that inhibition of SPT ameliorates pathological cardiac outcomes in models of lipid overload, but the metabolites responsible for these phenotypes remain unidentified. Recent in vitro studies have shown that incorporation of the novel subunit SPTLC3 broadens the substrate specificity of SPT, allowing utilization of myristoyl-coenzyme A (CoA) in addition to its canonical substrate palmitoyl-CoA. However, the relevance of these findings in vivo has yet to be determined. The present study sought to determine whether myristate-derived d16 sphingolipids are represented among myocardial sphingolipids and, if so, whether their function and metabolic routes were distinct from those of palmitate-derived d18 sphingolipids. Data showed that d16:0 sphingoid bases occurred in more than one-third of total dihydrosphingosine and dihydroceramides in myocardium, and a diet high in saturated fat promoted their de novo production. Intriguingly, d16-ceramides demonstrated highly limited N-acyl chain diversity, and in vitro enzyme activity assays showed that these bases were utilized preferentially to canonical bases by CerS1. Functional differences between myristate- and palmitate-derived sphingolipids were observed in that, unlike d18 sphingolipids and SPTLC2, d16 sphingolipids and SPTLC3 did not appear to contribute to myristate-induced autophagy, whereas only d16 sphingolipids promoted cell death and cleavage of poly(ADP-ribose) polymerase in cardiomyocytes. Thus, these results reveal a previously unappreciated component of cardiac sphingolipids with functional differences from canonical sphingolipids.

摘要

背景

豆蔻酸是一种新型潜在的神经酰胺合成底物。

结果

心肌鞘氨醇碱基合成利用豆蔻酸;这些鞘脂与典型鞘氨醇碱基在功能上并非冗余。

结论

d16:0 和 d16:1 鞘脂构成了心脏二氢鞘氨醇和二氢神经酰胺的可观比例,具有独特的生物学作用。

意义

这一池鞘脂可能在心肌病理或保护中发挥了迄今未被察觉的作用。丝氨酸棕榈酰转移酶(SPT)酶催化鞘氨醇碱基“骨干”的形成,所有鞘脂都由此衍生。先前的研究表明,SPT 的抑制可改善脂质过载模型中的病理性心脏结局,但负责这些表型的代谢物仍未确定。最近的体外研究表明,新型亚基 SPTLC3 的掺入拓宽了 SPT 的底物特异性,允许除其典型底物棕榈酰-CoA 之外,还利用豆蔻酰-CoA。然而,这些发现在体内的相关性尚未确定。本研究旨在确定豆蔻酰基衍生的 d16 鞘脂是否存在于心肌鞘脂中,如果存在,其功能和代谢途径是否与棕榈酰基衍生的 d18 鞘脂不同。研究数据表明,d16:0 鞘氨醇碱基存在于心肌中二氢鞘氨醇和二氢神经酰胺的三分之一以上,并且富含饱和脂肪的饮食促进了它们的从头合成。有趣的是,d16-神经酰胺表现出高度受限的 N-酰基链多样性,体外酶活性测定表明,这些碱基优先被 CerS1 利用而不是典型碱基。与 d18 鞘脂和 SPTLC2 不同,豆蔻酰基衍生的鞘脂和 SPTLC3 似乎不参与豆蔻酸诱导的自噬,而只有 d16 鞘脂促进心肌细胞中的细胞死亡和聚(ADP-核糖)聚合酶的裂解,观察到豆蔻酸和棕榈酸衍生的鞘脂之间存在功能差异。因此,这些结果揭示了心脏鞘脂的一个以前未被重视的组成部分,与典型鞘脂具有功能差异。

相似文献

1
Myristate-derived d16:0 sphingolipids constitute a cardiac sphingolipid pool with distinct synthetic routes and functional properties.
J Biol Chem. 2013 May 10;288(19):13397-409. doi: 10.1074/jbc.M112.428185. Epub 2013 Mar 25.
2
The SPTLC3 subunit of serine palmitoyltransferase generates short chain sphingoid bases.
J Biol Chem. 2009 Sep 25;284(39):26322-30. doi: 10.1074/jbc.M109.023192. Epub 2009 Aug 1.
3
SPTLC3 Is Essential for Complex I Activity and Contributes to Ischemic Cardiomyopathy.
Circulation. 2024 Aug 20;150(8):622-641. doi: 10.1161/CIRCULATIONAHA.123.066879. Epub 2024 Apr 25.
4
Subunit composition of the mammalian serine-palmitoyltransferase defines the spectrum of straight and methyl-branched long-chain bases.
Proc Natl Acad Sci U S A. 2020 Jul 7;117(27):15591-15598. doi: 10.1073/pnas.2002391117. Epub 2020 Jun 23.
5
Serine Palmitoyltransferase Subunit 3 and Metabolic Diseases.
Adv Exp Med Biol. 2022;1372:47-56. doi: 10.1007/978-981-19-0394-6_4.
7
CRISPR/Cas9 deletion of ORMDLs reveals complexity in sphingolipid metabolism.
J Lipid Res. 2021;62:100082. doi: 10.1016/j.jlr.2021.100082. Epub 2021 Apr 30.
9
Modulation of sphingolipid metabolism with calorie restriction enhances insulin action in skeletal muscle.
J Nutr Biochem. 2015 Jul;26(7):687-95. doi: 10.1016/j.jnutbio.2015.01.007. Epub 2015 Mar 5.
10
Sphingoid bases of dietary ceramide 2-aminoethylphosphonate, a marine sphingolipid, absorb into lymph in rats.
J Lipid Res. 2019 Feb;60(2):333-340. doi: 10.1194/jlr.M085654. Epub 2018 Dec 14.

引用本文的文献

1
Ceramide signaling in immunity: a molecular perspective.
Lipids Health Dis. 2025 Jul 1;24(1):225. doi: 10.1186/s12944-025-02642-2.
2
Deep sphingolipidomic and metabolomic analyses of ceramide synthase 2 null mice reveal complex pathway-specific effects.
J Lipid Res. 2025 Jul;66(7):100832. doi: 10.1016/j.jlr.2025.100832. Epub 2025 May 29.
3
The bioactive sphingolipid playbook. A primer for the uninitiated as well as sphingolipidologists.
J Lipid Res. 2025 Jun;66(6):100813. doi: 10.1016/j.jlr.2025.100813. Epub 2025 Apr 18.
4
Serum and plasma sphingolipids as biomarkers of chemotherapy-induced cardiotoxicity in female patients with breast cancer.
J Lipid Res. 2025 May;66(5):100798. doi: 10.1016/j.jlr.2025.100798. Epub 2025 Apr 5.
6
SPTLC3 regulates plasma membrane sphingolipid composition to facilitate hepatic gluconeogenesis.
Cell Rep. 2024 Dec 24;43(12):115054. doi: 10.1016/j.celrep.2024.115054. Epub 2024 Dec 10.
8
Adipocyte sphingosine kinase 1 regulates histone modifiers to disrupt circadian function.
bioRxiv. 2024 Sep 16:2024.09.13.612486. doi: 10.1101/2024.09.13.612486.
9
Atypical sphingosine-1-phosphate metabolites-biological implications of alkyl chain length.
Pflugers Arch. 2024 Dec;476(12):1833-1843. doi: 10.1007/s00424-024-03018-8. Epub 2024 Sep 19.
10
Emerging role of sphingolipids and extracellular vesicles in development and therapeutics of cardiovascular diseases.
Int J Cardiol Heart Vasc. 2024 Jul 23;53:101469. doi: 10.1016/j.ijcha.2024.101469. eCollection 2024 Aug.

本文引用的文献

1
Topological and functional characterization of the ssSPTs, small activating subunits of serine palmitoyltransferase.
J Biol Chem. 2013 Apr 5;288(14):10144-10153. doi: 10.1074/jbc.M113.451526. Epub 2013 Feb 20.
2
Ceramide synthase 5 mediates lipid-induced autophagy and hypertrophy in cardiomyocytes.
J Clin Invest. 2012 Nov;122(11):3919-30. doi: 10.1172/JCI63888.
3
SNPs affecting serum metabolomic traits may regulate gene transcription and lipid accumulation in the liver.
Metabolism. 2012 Nov;61(11):1523-7. doi: 10.1016/j.metabol.2012.05.004. Epub 2012 Jun 26.
4
Cardiomyocyte specific deficiency of serine palmitoyltransferase subunit 2 reduces ceramide but leads to cardiac dysfunction.
J Biol Chem. 2012 May 25;287(22):18429-39. doi: 10.1074/jbc.M111.296947. Epub 2012 Apr 9.
5
Cardiomyocyte death: mechanisms and translational implications.
Cell Death Dis. 2011 Dec 22;2(12):e244. doi: 10.1038/cddis.2011.130.
6
Acyl chain specificity of ceramide synthases is determined within a region of 150 residues in the Tram-Lag-CLN8 (TLC) domain.
J Biol Chem. 2012 Jan 27;287(5):3197-206. doi: 10.1074/jbc.M111.280271. Epub 2011 Dec 5.
7
Plasma deoxysphingolipids: a novel class of biomarkers for the metabolic syndrome?
Diabetologia. 2012 Feb;55(2):421-31. doi: 10.1007/s00125-011-2384-1. Epub 2011 Nov 29.
8
Bilayer hydrophobic thickness and integral membrane protein function.
Curr Protein Pept Sci. 2011 Dec;12(8):760-6. doi: 10.2174/138920311798841681.
9
Heart sphingolipids in health and disease.
Adv Exp Med Biol. 2011;721:41-56. doi: 10.1007/978-1-4614-0650-1_3.
10
Sphingolipid metabolism and analysis in metabolic disease.
Adv Exp Med Biol. 2011;721:1-17. doi: 10.1007/978-1-4614-0650-1_1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验