Suppr超能文献

在运动过程中,站立时募集的力敏传入纤维对摆动侧肢体的感觉抑制进行编码。

Force-sensitive afferents recruited during stance encode sensory depression in the contralateral swinging limb during locomotion.

机构信息

Department of Physiology, Emory University School of Medicine, Atlanta, GA 30322, USA.

出版信息

Ann N Y Acad Sci. 2013 Mar;1279(1):103-13. doi: 10.1111/nyas.12055.

Abstract

Afferent feedback alters muscle activity during locomotion and must be tightly controlled. As primary afferent depolarization-induced presynaptic inhibition (PAD-PSI) regulates afferent signaling, we investigated hindlimb PAD-PSI during locomotion in an in vitro rat spinal cord-hindlimb preparation. We compared the relation of PAD-PSI, measured as dorsal root potentials (DRPs), to observed ipsilateral and contralateral limb endpoint forces. Afferents activated during stance-phase force strongly and proportionately influenced DRP magnitude in the swinging limb. Responses increased with locomotor frequency. Electrical stimulation of contralateral afferents also preferentially evoked DRPs in the opposite limb during swing (flexion). Nerve lesioning, in conjunction with kinematic results, support a prominent contribution from toe Golgi tendon organ afferents. Thus, force-dependent afferent feedback during stance binds interlimb sensorimotor state to a proportional PAD-PSI in the swinging limb, presumably to optimize interlimb coordination. These results complement known actions of ipsilateral afferents on PAD-PSI during locomotion.

摘要

传入反馈会改变运动过程中的肌肉活动,必须进行严格控制。由于初级传入去极化诱导的突触前抑制(PAD-PSI)调节传入信号,我们在体外大鼠脊髓-后肢标本中研究了运动过程中的后肢 PAD-PSI。我们比较了 PAD-PSI(以背根电位(DRP)测量)与观察到的同侧和对侧肢体末端力之间的关系。在支撑相力作用下激活的传入神经强烈且成比例地影响摆动肢体中 DRP 的幅度。反应随运动频率而增加。对侧传入神经的电刺激也会在摆动(弯曲)期间优先在相反的肢体中诱发 DRP。神经切断术结合运动学结果,支持趾高尔基肌腱器官传入神经的重要贡献。因此,支撑相时依赖于力的传入反馈将肢体间的感觉运动状态与摆动肢体中的比例 PAD-PSI 联系起来,可能是为了优化肢体间的协调。这些结果补充了已知的同侧传入神经在运动过程中对 PAD-PSI 的作用。

相似文献

2
Stance-phase force on the opposite limb dictates swing-phase afferent presynaptic inhibition during locomotion.
J Neurophysiol. 2012 Jun;107(11):3168-80. doi: 10.1152/jn.01134.2011. Epub 2012 Mar 21.
8
The organization of primary afferent depolarization in the isolated spinal cord of the frog.
J Physiol. 1973 Mar;229(2):471-93. doi: 10.1113/jphysiol.1973.sp010148.
10
Sensory integration in presynaptic inhibitory pathways during fictive locomotion in the cat.
J Neurophysiol. 2002 Jul;88(1):163-71. doi: 10.1152/jn.2002.88.1.163.

引用本文的文献

本文引用的文献

1
Enabling techniques for in vitro studies on mammalian spinal locomotor mechanisms.
Front Biosci (Landmark Ed). 2012 Jun 1;17(6):2158-80. doi: 10.2741/4043.
2
Stance-phase force on the opposite limb dictates swing-phase afferent presynaptic inhibition during locomotion.
J Neurophysiol. 2012 Jun;107(11):3168-80. doi: 10.1152/jn.01134.2011. Epub 2012 Mar 21.
4
The influence of foot posture on the cost of transport in humans.
J Exp Biol. 2010 Mar 1;213(5):790-7. doi: 10.1242/jeb.038984.
5
Flexibility of motor pattern generation across stimulation conditions by the neonatal rat spinal cord.
J Neurophysiol. 2010 Mar;103(3):1580-90. doi: 10.1152/jn.00961.2009. Epub 2010 Jan 20.
6
Bilateral limb phase relationship and its potential to alter muscle activity phasing during locomotion.
J Neurophysiol. 2009 Nov;102(5):2856-65. doi: 10.1152/jn.00211.2009. Epub 2009 Sep 9.
7
An in vitro spinal cord-hindlimb preparation for studying behaviorally relevant rat locomotor function.
J Neurophysiol. 2009 Feb;101(2):1114-22. doi: 10.1152/jn.90523.2008. Epub 2008 Dec 10.
9
Locomotor rhythmogenesis in the isolated rat spinal cord: a phase-coupled set of symmetrical flexion extension oscillators.
J Physiol. 2007 Aug 15;583(Pt 1):115-28. doi: 10.1113/jphysiol.2007.133413. Epub 2007 Jun 14.
10
Plasticity of connections underlying locomotor recovery after central and/or peripheral lesions in the adult mammals.
Philos Trans R Soc Lond B Biol Sci. 2006 Sep 29;361(1473):1647-71. doi: 10.1098/rstb.2006.1889.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验