Vashistha Himanshu, Meggs Leonard
Nephrology Research Laboratory, Institute of Translational Research, and.
Ochsner J. 2013 Spring;13(1):140-6.
A fundamental problem in the identification of new molecular targets for therapeutic intervention in diabetic nephropathy has been the lack of an experimental mouse model that faithfully recapitulates human diabetic nephropathy.
Our laboratory, in collaboration with Drs Kakoki and Smithies at the University of North Carolina-Chapel Hill, has developed novel strains of Akita diabetic mice in which the p66 longevity gene has been deleted by homologous recombination. We chose to delete p66 because p66 controls mitochondrial metabolism and cellular responses to oxidative stress, aging, and apoptosis. The redox function of p66 is indispensable for the exponential increase in reactive oxygen species (ROS) associated with diabetes.
p66 null Akita mice express a protection phenotype in kidneys that includes marked attenuation of oxidative stress and glomerular/tubular injury and a striking reduction in urine albumin excretion. Furthermore, the p66 null mutation not only confers a survival advantage to podocytes but also prevents foot process effacement and retains the stationary phenotype. Sirtuin 1 (SIRT1) deacetylase and p66 share overlapping biological functions but induce divergent phenotypes, including opposite effects on longevity, ROS metabolism, cell senescence, and apoptosis. Exciting new data from our laboratory show that SIRT1 is upregulated in the kidneys of p66 null Akita mice and decreases acetylation of p53, which destabilizes the p53 protein and prevents the transcription of p53 proapoptosis genes. Conversely, SIRT1 activates the transcription of FOXO3a-dependent stress gene programs that detoxify ROS and promote the survival phenotype.
We will focus future research on translating these experimental findings in the mouse to clinical diabetic nephropathy.
在糖尿病肾病治疗干预新分子靶点的识别中,一个基本问题是缺乏能如实地重现人类糖尿病肾病的实验小鼠模型。
我们实验室与北卡罗来纳大学教堂山分校的Kakoki博士和Smithies博士合作,培育出了新型阿基塔糖尿病小鼠品系,其中p66长寿基因已通过同源重组被删除。我们选择删除p66是因为p66控制线粒体代谢以及细胞对氧化应激、衰老和凋亡的反应。p66的氧化还原功能对于与糖尿病相关的活性氧(ROS)指数性增加是不可或缺的。
p66基因敲除的阿基塔小鼠在肾脏中表现出一种保护表型,包括氧化应激和肾小球/肾小管损伤明显减轻,以及尿白蛋白排泄显著减少。此外,p66基因敲除突变不仅赋予足细胞生存优势,还能防止足突消失并维持静止表型。沉默调节蛋白1(SIRT1)脱乙酰酶和p66具有重叠的生物学功能,但会诱导不同的表型,包括对寿命、ROS代谢、细胞衰老和凋亡的相反影响。我们实验室令人兴奋的新数据表明,SIRT1在p66基因敲除的阿基塔小鼠肾脏中上调,并降低p53的乙酰化水平,这使p53蛋白不稳定并阻止p53促凋亡基因的转录。相反,SIRT1激活FOXO3a依赖性应激基因程序的转录,该程序可清除ROS并促进生存表型。
我们未来的研究将集中于把小鼠身上的这些实验结果转化到临床糖尿病肾病中。