Suppr超能文献

菌根真菌对珍稀兰花和常见兰花的养分获取模式的差异解释了这一在全球生物多样性热点地区的多样化现象。

Variation in nutrient-acquisition patterns by mycorrhizal fungi of rare and common orchids explains diversification in a global biodiversity hotspot.

机构信息

School of Plant Biology, Faculty of Science, The University of Western Australia, Crawley, WA 6009, Australia.

出版信息

Ann Bot. 2013 Jun;111(6):1233-41. doi: 10.1093/aob/mct064. Epub 2013 Mar 26.

Abstract

BACKGROUND AND AIMS

Many terrestrial orchids have an obligate requirement for mycorrhizal associations to provide nutritional support from germination to establishment. This study will investigate the ability of orchid mycorrhizal fungi (OMF) to utilize a variety of nutrient sources in the nutrient-impoverished (low organic) soils of the Southwest Australian Floristic Region (SWAFR) in order to effectively compete, survive and sustain the orchid host.

METHODS

Mycorrhizal fungi representing key OMF genera were isolated from three common and widespread species: Pterostylis recurva, Caladenia flava and Diuris corymbosa, and one rare and restricted species: Drakaea elastica. The accessibility of specific nutrients was assessed by comparing growth including dry biomass of OMF in vitro on basal CN MMN liquid media.

KEY RESULTS

Each of the OMF accessed and effectively utilized a wide variety of nutrient compounds, including carbon (C) sources, inorganic and organic nitrogen (N) and inorganic and organic phosphorus (P). The nutrient compounds utilized varied between the genera of OMF, most notably sources of N.

CONCLUSIONS

These results suggest that OMF can differentiate between niches (micro-niche specialization) in a constrained, highly resource-limited environment such as the SWAFR. Phosphorus is the most limited macronutrient in SWAFR soils and the ability to access phytate by OMF indicates a characterizing functional capacity of OMF from the SWAFR. Furthermore, compared with OMF isolated from the rare D. elastica, OMF associating with the common P. recurva produced far greater biomass over a wider variety of nutritional sources. This suggests a broader tolerance for habitat variation providing more opportunities for the common orchid for recruitment and establishment at a site.

摘要

背景与目的

许多陆生兰花必须与菌根真菌形成共生关系,以从萌发到定植阶段获取营养支持。本研究将调查兰花菌根真菌(OMF)利用西南澳大利亚植物区系(SWAFR)贫瘠土壤(低有机)中各种养分源的能力,以有效竞争、存活并维持兰花宿主。

方法

从三种常见且广泛分布的物种(Pterostylis recurva、Caladenia flava 和 Diuris corymbosa)和一种稀有且受限的物种(Drakaea elastica)中分离出代表关键 OMF 属的菌根真菌。通过比较 OMF 在基础 CN MMN 液体培养基上的体外生长情况,包括干生物量,评估特定养分的可利用性。

主要结果

OMF 有效地利用了各种养分化合物,包括碳(C)源、无机和有机氮(N)以及无机和有机磷(P),每个 OMF 都能获取并利用这些养分化合物。OMF 属之间利用的养分化合物存在差异,最显著的是 N 源。

结论

这些结果表明,OMF 可以在西南澳大利亚植物区系等资源受限的受限环境中区分生态位(微生态位特化)。磷是 SWAFR 土壤中最有限的大量营养素,OMF 对植酸的利用表明了 OMF 从 SWAFR 中具有特征性功能能力。此外,与从稀有 D. elastica 中分离出的 OMF 相比,与常见 P. recurva 相关的 OMF 在更广泛的营养源上产生了更大的生物量。这表明对栖息地变化的容忍度更高,为常见兰花在一个地点的招募和定植提供了更多机会。

相似文献

2
Mycorrhizal preference promotes habitat invasion by a native Australian orchid: Microtis media.
Ann Bot. 2013 Mar;111(3):409-18. doi: 10.1093/aob/mcs294. Epub 2012 Dec 28.
4
Inorganic phosphorus nutrition in green-leaved terrestrial orchid seedlings.
Ann Bot. 2022 May 12;129(6):669-678. doi: 10.1093/aob/mcac030.
6
Availability of orchid mycorrhizal fungi on roadside trees in a tropical urban landscape.
Sci Rep. 2019 Dec 20;9(1):19528. doi: 10.1038/s41598-019-56049-y.
7
Terrestrial orchid conservation in the age of extinction.
Ann Bot. 2009 Aug;104(3):543-56. doi: 10.1093/aob/mcp025. Epub 2009 Feb 14.
9
Preliminary findings on identification of mycorrhizal fungi from diverse orchids in the Central Highlands of Madagascar.
Mycorrhiza. 2015 Nov;25(8):611-25. doi: 10.1007/s00572-015-0635-6. Epub 2015 Mar 14.
10
Co-occurring epiphytic orchids have specialized mycorrhizal fungal niches that are also linked to ontogeny.
Mycorrhiza. 2023 Mar;33(1-2):87-105. doi: 10.1007/s00572-022-01099-w. Epub 2023 Jan 18.

引用本文的文献

2
Limited efficacy of a commercial microbial inoculant for improving growth and physiological performance of native plant species.
Conserv Physiol. 2024 Jun 18;12(1):coae037. doi: 10.1093/conphys/coae037. eCollection 2024.
7
Stoichiometry of carbon, nitrogen and phosphorus is closely linked to trophic modes in orchids.
BMC Plant Biol. 2023 Sep 12;23(1):422. doi: 10.1186/s12870-023-04436-z.
9
Interactions among mycorrhizal fungi enhance the early development of a Mediterranean orchid.
Mycorrhiza. 2023 Jul;33(4):229-240. doi: 10.1007/s00572-023-01118-4. Epub 2023 Jul 12.
10
Soil properties and plant species can predict population size and potential introduction sites of the endangered orchid .
Plant Soil. 2023;487(1-2):467-483. doi: 10.1007/s11104-023-05945-4. Epub 2023 Feb 16.

本文引用的文献

1
Mycorrhizal diversity in photosynthetic terrestrial orchids.
New Phytol. 2004 Aug;163(2):425-438. doi: 10.1111/j.1469-8137.2004.01114.x.
3
6
Ecological specialization in mycorrhizal symbiosis leads to rarity in an endangered orchid.
Mol Ecol. 2010 Aug;19(15):3226-42. doi: 10.1111/j.1365-294X.2010.04736.x.
8
Terrestrial orchid conservation in the age of extinction.
Ann Bot. 2009 Aug;104(3):543-56. doi: 10.1093/aob/mcp025. Epub 2009 Feb 14.
9
Plant nutrient-acquisition strategies change with soil age.
Trends Ecol Evol. 2008 Feb;23(2):95-103. doi: 10.1016/j.tree.2007.10.008. Epub 2008 Jan 11.
10
Further advances in orchid mycorrhizal research.
Mycorrhiza. 2007 Sep;17(6):475-486. doi: 10.1007/s00572-007-0138-1. Epub 2007 Jun 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验