Huntsman Cancer Institute, Department of Oncological Sciences, University of Utah, Salt Lake City, Utah, United States of America.
PLoS One. 2013;8(3):e58145. doi: 10.1371/journal.pone.0058145. Epub 2013 Mar 22.
DiGeorge syndrome (DGS) is the most common microdeletion syndrome, and is characterized by congenital cardiac, craniofacial and immune system abnormalities. The cardiac defects in DGS patients include conotruncal and ventricular septal defects. Although the etiology of DGS is critically regulated by TBX1 gene, the molecular pathways underpinning TBX1's role in heart development are not fully understood. In this study, we characterized heart defects and downstream signaling in the zebrafish tbx1(-/-) mutant, which has craniofacial and immune defects similar to DGS patients. We show that tbx1(-/-) mutants have defective heart looping, morphology and function. Defective heart looping is accompanied by failure of cardiomyocytes to differentiate normally and failure to change shape from isotropic to anisotropic morphology in the outer curvatures of the heart. This is the first demonstration of tbx1's role in regulating heart looping, cardiomyocyte shape and differentiation, and may explain how Tbx1 regulates conotruncal development in humans. Next we elucidated tbx1's molecular signaling pathway guided by the cardiac phenotype of tbx1(-/-) mutants. We show for the first time that wnt11r (wnt11 related), a member of the non-canonical Wnt pathway, and its downstream effector gene alcama (activated leukocyte cell adhesion molecule a) regulate heart looping and differentiation similarly to tbx1. Expression of both wnt11r and alcama are downregulated in tbx1(-/-) mutants. In addition, both wnt11r (-/-) mutants and alcama morphants have heart looping and differentiation defects similar to tbx1(-/-) mutants. Strikingly, heart looping and differentiation in tbx1(-/-) mutants can be partially rescued by ectopic expression of wnt11r or alcama, supporting a model whereby heart looping and differentiation are regulated by tbx1 in a linear pathway through wnt11r and alcama. This is the first study linking tbx1 and non-canonical Wnt signaling and extends our understanding of DGS and heart development.
22 号染色体部分单体综合征(即 DiGeorge 综合征,DGS)是最常见的微缺失综合征,其特征为先天性心脏、颅面和免疫系统异常。DGS 患者的心脏缺陷包括圆锥动脉干和室间隔缺损。尽管 DGS 的病因受到 TBX1 基因的严格调控,但 TBX1 在心脏发育中的作用的分子途径尚不完全清楚。在这项研究中,我们对具有与 DGS 患者相似的颅面和免疫缺陷的斑马鱼 tbx1(-/-)突变体的心脏缺陷和下游信号进行了表征。我们发现 tbx1(-/-)突变体的心脏环化、形态和功能均有缺陷。心脏环化缺陷伴随着心肌细胞不能正常分化以及心脏外弯曲处的细胞从各向同性形态转变为各向异性形态的失败。这是 TBX1 调节心脏环化、心肌细胞形状和分化的作用的首次证明,可能解释了 Tbx1 如何调节人类圆锥动脉干的发育。接下来,我们根据 tbx1(-/-)突变体的心脏表型阐明了 tbx1 的分子信号通路。我们首次表明,非经典 Wnt 通路的成员 wnt11r(wnt11 相关)及其下游效应基因 alcama(激活白细胞细胞黏附分子 a)与 tbx1 类似地调节心脏环化和分化。wnt11r 和 alcama 的表达在 tbx1(-/-)突变体中均下调。此外,wnt11r(-/-)突变体和 alcama 形态发生缺陷体也具有与 tbx1(-/-)突变体相似的心脏环化和分化缺陷。引人注目的是,tbx1(-/-)突变体的心脏环化和分化可以通过异位表达 wnt11r 或 alcama 得到部分挽救,这支持了心脏环化和分化通过 tbx1 在 wnt11r 和 alcama 的线性途径进行调控的模型。这是首次将 tbx1 和非经典 Wnt 信号联系起来的研究,并扩展了我们对 DGS 和心脏发育的认识。