Suppr超能文献

嵌入灰色关联理论的 Hopfield 神经网络:在运动想象脑电识别中的应用。

Embedded grey relation theory in Hopfield neural network: application to motor imagery EEG recognition.

机构信息

Department of Information Management, National Chung Cheng University, Taiwan.

出版信息

Clin EEG Neurosci. 2013 Oct;44(4):257-64. doi: 10.1177/1550059413477090. Epub 2013 Mar 26.

Abstract

In this study, grey-based Hopfield neural network (GHNN), is proposed for the unsupervised analysis of motor imagery (MI) electroencephalogram (EEG) data. Combined with segment selection and feature extraction, GHNN is used for the recognition of left and right MI data. A Gaussian-like filter is proposed to reduce noise, to further enhance performance of active segment selection. Features are extracted by coherence from wavelet data, and then discriminated by GHNN, which is an unsupervised approach suitable for the online classification of nonstationary biomedical signals. Compared to EEG data without segment selection, several usual features, and classifiers, the proposed system is potentially an analytic approach in brain-computer interface (BCI) applications.

摘要

在这项研究中,提出了基于灰色的 Hopfield 神经网络(GHNN),用于对运动想象(MI)脑电图(EEG)数据进行无监督分析。GHNN 结合了分段选择和特征提取,用于识别左右 MI 数据。提出了一种类高斯滤波器来减少噪声,以进一步提高主动分段选择的性能。特征是从小波数据的相干性中提取出来的,然后由 GHNN 进行区分,GHNN 是一种适合非平稳生物医学信号在线分类的无监督方法。与没有分段选择、常用特征和分类器的 EEG 数据相比,所提出的系统在脑机接口(BCI)应用中是一种潜在的分析方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验