Institute for Knowledge Discovery, Graz University of Technology, Graz, Austria.
J Neural Eng. 2013 Aug;10(4):046006. doi: 10.1088/1741-2560/10/4/046006. Epub 2013 Jun 11.
Many brain-computer interfaces (BCIs) use band power (BP) changes in the electroencephalogram to distinguish between different motor imagery (MI) patterns. Most current approaches do not take connectivity of separated brain areas into account. Our objective is to introduce single-trial connectivity features and apply these features to BCI data.
We introduce a procedure for extracting single-trial connectivity estimates from vector autoregressive (VAR) models of independent components in a BCI setting.
In a simulated BCI, we demonstrate that the directed transfer function (DTF) with full-frequency normalization and the direct DTF give classification results similar to BP, while other measures such as the partial directed coherence perform significantly worse.
We show that single-trial MI classification is possible with connectivity measures extracted from VAR models, and that a BCI could potentially utilize such measures.
许多脑-机接口(BCI)使用脑电图中的频带功率(BP)变化来区分不同的运动想象(MI)模式。目前大多数方法都没有考虑到分离脑区的连通性。我们的目标是引入单试连通性特征,并将这些特征应用于 BCI 数据。
我们介绍了一种从 BCI 环境中的独立成分向量自回归(VAR)模型中提取单试连通性估计的方法。
在一个模拟的 BCI 中,我们证明了全频归一化的有向传递函数(DTF)和直接 DTF 给出了与 BP 相似的分类结果,而其他指标,如部分定向相干性,表现则明显更差。
我们表明,使用从 VAR 模型中提取的连通性测量值可以进行单试 MI 分类,并且 BCI 可能会利用这些测量值。