Suppr超能文献

脑重组而非相对脑容量大小主要决定了灵长类动物的脑进化。

Brain reorganization, not relative brain size, primarily characterizes anthropoid brain evolution.

机构信息

Department of Anthropology, University College London, 14 Taviton Street, London WC1H 0BW, UK.

出版信息

Proc Biol Sci. 2013 Mar 27;280(1759):20130269. doi: 10.1098/rspb.2013.0269. Print 2013 May 22.

Abstract

Comparative analyses of primate brain evolution have highlighted changes in size and internal organization as key factors underlying species diversity. It remains, however, unclear (i) how much variation in mosaic brain reorganization versus variation in relative brain size contributes to explaining the structural neural diversity observed across species, (ii) which mosaic changes contribute most to explaining diversity, and (iii) what the temporal origin, rates and processes are that underlie evolutionary shifts in mosaic reorganization for individual branches of the primate tree of life. We address these questions by combining novel comparative methods that allow assessing the temporal origin, rate and process of evolutionary changes on individual branches of the tree of life, with newly available data on volumes of key brain structures (prefrontal cortex, frontal motor areas and cerebrocerebellum) for a sample of 17 species (including humans). We identify patterns of mosaic change in brain evolution that mirror brain systems previously identified by electrophysiological and anatomical tract-tracing studies in non-human primates and functional connectivity MRI studies in humans. Across more than 40 Myr of anthropoid primate evolution, mosaic changes contribute more to explaining neural diversity than changes in relative brain size, and different mosaic patterns are differentially selected for when brains increase or decrease in size. We identify lineage-specific evolutionary specializations for all branches of the tree of life covered by our sample and demonstrate deep evolutionary roots for mosaic patterns associated with motor control and learning.

摘要

灵长类动物大脑进化的比较分析强调了大小和内部组织的变化是物种多样性的关键因素。然而,仍不清楚:(i)镶嵌性脑重组的变化与相对大脑大小的变化在多大程度上有助于解释观察到的物种间结构神经多样性;(ii)哪些镶嵌变化对解释多样性贡献最大;以及(iii)镶嵌重组在灵长类动物生命之树的各个分支中进化变化的时间起源、速率和过程是什么。我们通过结合新的比较方法来解决这些问题,这些方法允许评估生命之树各个分支的进化变化的时间起源、速率和过程,同时还可以利用关键大脑结构(前额叶皮层、额叶运动区和cerebrocerebellum)的新数据,这些数据来自 17 个物种(包括人类)的样本。我们确定了大脑进化中的镶嵌性变化模式,这些模式反映了以前在非人类灵长类动物的电生理和解剖学追踪研究以及人类的功能连接 MRI 研究中确定的大脑系统。在超过 4000 万年的类人猿进化过程中,镶嵌性变化对解释神经多样性的贡献大于相对大脑大小的变化,并且在大脑大小增加或减少时,不同的镶嵌模式会有不同的选择。我们为我们样本涵盖的生命之树的所有分支确定了谱系特异性的进化专门化,并证明了与运动控制和学习相关的镶嵌模式具有深刻的进化根源。

相似文献

引用本文的文献

1
Human dexterity and brains evolved hand in hand.人类的灵巧性与大脑是协同进化的。
Commun Biol. 2025 Aug 26;8(1):1257. doi: 10.1038/s42003-025-08686-5.
7
A brief sketch across multiscale and comparative neuroanatomical features.跨多尺度和比较神经解剖学特征的简要概述。
Front Neuroanat. 2023 Feb 13;17:1108363. doi: 10.3389/fnana.2023.1108363. eCollection 2023.
9
Behavioral performance and division of labor influence brain mosaicism in the leafcutter ant Atta cephalotes.行为表现和分工影响切叶蚁Atta cephalotes的脑镶嵌现象。
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2022 Mar;208(2):325-344. doi: 10.1007/s00359-021-01539-6. Epub 2022 Feb 3.
10
The neuroecology of the water-to-land transition and the evolution of the vertebrate brain.水到陆的过渡的神经生态学和脊椎动物大脑的演化。
Philos Trans R Soc Lond B Biol Sci. 2022 Feb 14;377(1844):20200523. doi: 10.1098/rstb.2020.0523. Epub 2021 Dec 27.

本文引用的文献

4
Embodied cognitive evolution and the cerebellum.具身认知进化与小脑。
Philos Trans R Soc Lond B Biol Sci. 2012 Aug 5;367(1599):2097-107. doi: 10.1098/rstb.2012.0112.
8
Primate encephalization.灵长类动物的脑化
Prog Brain Res. 2012;195:393-412. doi: 10.1016/B978-0-444-53860-4.00019-2.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验