Department of Anthropology, University College London, 14 Taviton Street, London WC1H 0BW, UK.
Proc Biol Sci. 2013 Mar 27;280(1759):20130269. doi: 10.1098/rspb.2013.0269. Print 2013 May 22.
Comparative analyses of primate brain evolution have highlighted changes in size and internal organization as key factors underlying species diversity. It remains, however, unclear (i) how much variation in mosaic brain reorganization versus variation in relative brain size contributes to explaining the structural neural diversity observed across species, (ii) which mosaic changes contribute most to explaining diversity, and (iii) what the temporal origin, rates and processes are that underlie evolutionary shifts in mosaic reorganization for individual branches of the primate tree of life. We address these questions by combining novel comparative methods that allow assessing the temporal origin, rate and process of evolutionary changes on individual branches of the tree of life, with newly available data on volumes of key brain structures (prefrontal cortex, frontal motor areas and cerebrocerebellum) for a sample of 17 species (including humans). We identify patterns of mosaic change in brain evolution that mirror brain systems previously identified by electrophysiological and anatomical tract-tracing studies in non-human primates and functional connectivity MRI studies in humans. Across more than 40 Myr of anthropoid primate evolution, mosaic changes contribute more to explaining neural diversity than changes in relative brain size, and different mosaic patterns are differentially selected for when brains increase or decrease in size. We identify lineage-specific evolutionary specializations for all branches of the tree of life covered by our sample and demonstrate deep evolutionary roots for mosaic patterns associated with motor control and learning.
灵长类动物大脑进化的比较分析强调了大小和内部组织的变化是物种多样性的关键因素。然而,仍不清楚:(i)镶嵌性脑重组的变化与相对大脑大小的变化在多大程度上有助于解释观察到的物种间结构神经多样性;(ii)哪些镶嵌变化对解释多样性贡献最大;以及(iii)镶嵌重组在灵长类动物生命之树的各个分支中进化变化的时间起源、速率和过程是什么。我们通过结合新的比较方法来解决这些问题,这些方法允许评估生命之树各个分支的进化变化的时间起源、速率和过程,同时还可以利用关键大脑结构(前额叶皮层、额叶运动区和cerebrocerebellum)的新数据,这些数据来自 17 个物种(包括人类)的样本。我们确定了大脑进化中的镶嵌性变化模式,这些模式反映了以前在非人类灵长类动物的电生理和解剖学追踪研究以及人类的功能连接 MRI 研究中确定的大脑系统。在超过 4000 万年的类人猿进化过程中,镶嵌性变化对解释神经多样性的贡献大于相对大脑大小的变化,并且在大脑大小增加或减少时,不同的镶嵌模式会有不同的选择。我们为我们样本涵盖的生命之树的所有分支确定了谱系特异性的进化专门化,并证明了与运动控制和学习相关的镶嵌模式具有深刻的进化根源。