Suppr超能文献

利用反向遗传学技术生成具有新型基因组重排和异源序列的遗传稳定重组轮状病毒。

Generation of genetically stable recombinant rotaviruses containing novel genome rearrangements and heterologous sequences by reverse genetics.

机构信息

Rotavirus Molecular Biology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA.

出版信息

J Virol. 2013 Jun;87(11):6211-20. doi: 10.1128/JVI.00413-13. Epub 2013 Mar 27.

Abstract

The rotavirus (RV) genome consists of 11 segments of double-stranded RNA (dsRNA). Typically, each segment contains 5' and 3' untranslated regions (UTRs) that flank an open reading frame (ORF) encoding a single protein. RV variants with segments of atypical size owing to sequence rearrangements have been described. In many cases, the rearrangement originates from a partial head-to-tail sequence duplication that initiates after the stop codon of the ORF, leaving the protein product of the segment unaffected. To probe the limits of the RV genome to accommodate additional genetic sequence, we used reverse genetics to insert duplications (analogous to synthetic rearrangements) and heterologous sequences into the 3' UTR of the segment encoding NSP2 (gene 8). The approach allowed the recovery of recombinant RVs that contained sequence duplications (up to 200 bp) and heterologous sequences, including those for FLAG, the hepatitis C virus E2 epitope, and the internal ribosome entry site of cricket paralysis virus. The recombinant RVs grew to high titer (>10(7) PFU/ml) and remained genetically stable during serial passage. Despite their longer 3' UTRs, rearranged RNAs of recombinant RVs expressed wild-type levels of protein in vivo. Competitive growth experiments indicated that, unlike RV segments with naturally occurring sequence duplications, genetically engineered segments were less efficiently packaged into progeny viruses. Thus, features of naturally occurring rearranged segments, other than their increased length, contribute to their enhanced packaging phenotype. Our results define strategies for developing recombinant RVs as expression vectors, potentially leading to next-generation RV vaccines that induce protection against other infectious agents.

摘要

轮状病毒 (RV) 基因组由 11 个双链 RNA (dsRNA) 片段组成。通常,每个片段包含 5' 和 3' 非翻译区 (UTR),它们侧翼着一个开放阅读框 (ORF),该 ORF 编码单个蛋白质。由于序列重排,已经描述了具有非典型大小片段的 RV 变体。在许多情况下,重排源自部分从头至尾的序列复制,该复制在 ORF 的终止密码子之后开始,而不影响片段的蛋白质产物。为了探究 RV 基因组容纳额外遗传序列的极限,我们使用反向遗传学将复制(类似于合成重排)和异源序列插入编码 NSP2(基因 8)的片段的 3'UTR 中。该方法允许回收包含序列重复(多达 200bp)和异源序列的重组 RV,包括 FLAG、丙型肝炎病毒 E2 表位和蟋蟀麻痹病毒的内部核糖体进入位点。重组 RV 生长到高滴度(>10(7)PFU/ml),并在连续传代过程中保持遗传稳定性。尽管它们的 3'UTR 较长,但重组 RV 的重排 RNA 在体内表达野生型水平的蛋白质。竞争生长实验表明,与具有天然序列重复的 RV 片段不同,基因工程片段被更有效地包装到子代病毒中。因此,除了长度增加之外,天然发生的重排片段的特征有助于其增强的包装表型。我们的结果定义了开发重组 RV 作为表达载体的策略,这可能导致诱导针对其他感染性病原体的保护作用的下一代 RV 疫苗。

相似文献

3
Rearranged genomic RNA segments offer a new approach to the reverse genetics of rotaviruses.
J Virol. 2010 Jul;84(13):6711-9. doi: 10.1128/JVI.00547-10. Epub 2010 Apr 28.
4
7
Dual selection mechanisms drive efficient single-gene reverse genetics for rotavirus.
Proc Natl Acad Sci U S A. 2010 Oct 26;107(43):18652-7. doi: 10.1073/pnas.1011948107. Epub 2010 Oct 11.
9
What are the limits of the packaging capacity for genomic RNA in the cores of rotaviruses and of other members of the Reoviridae?
Virus Res. 2020 Jan 15;276:197822. doi: 10.1016/j.virusres.2019.197822. Epub 2019 Nov 26.

引用本文的文献

1
Rotavirus Reverse Genetics Systems and Oral Vaccine Delivery Vectors for Mucosal Vaccination.
Microorganisms. 2025 Jul 4;13(7):1579. doi: 10.3390/microorganisms13071579.
2
Efficient and robust reverse genetics system for bovine rotavirus generation and its application for antiviral screening.
Virol Sin. 2024 Dec;39(6):917-928. doi: 10.1016/j.virs.2024.09.010. Epub 2024 Sep 29.
3
Towards the Development of a Minigenome Assay for Species A Rotaviruses.
Viruses. 2024 Aug 31;16(9):1396. doi: 10.3390/v16091396.
4
Re-Examining Rotavirus Innate Immune Evasion: Potential Applications of the Reverse Genetics System.
mBio. 2022 Aug 30;13(4):e0130822. doi: 10.1128/mbio.01308-22. Epub 2022 Jun 14.
6
Recent advances in rotavirus reverse genetics and its utilization in basic research and vaccine development.
Arch Virol. 2021 Sep;166(9):2369-2386. doi: 10.1007/s00705-021-05142-7. Epub 2021 Jul 3.
7
Rotavirus as an Expression Platform of Domains of the SARS-CoV-2 Spike Protein.
Vaccines (Basel). 2021 May 3;9(5):449. doi: 10.3390/vaccines9050449.
8
Rotavirus as an Expression Platform of the SARS-CoV-2 Spike Protein.
bioRxiv. 2021 Feb 18:2021.02.18.431835. doi: 10.1101/2021.02.18.431835.
10

本文引用的文献

1
Comparative analysis of Reoviridae reverse genetics methods.
Methods. 2013 Feb;59(2):199-206. doi: 10.1016/j.ymeth.2012.05.012. Epub 2012 Jun 8.
2
Mycoreovirus genome alterations: similarities to and differences from rearrangements reported for other reoviruses.
Front Microbiol. 2012 Jun 1;3:186. doi: 10.3389/fmicb.2012.00186. eCollection 2012.
3
Drosophila melanogaster as a model organism for bluetongue virus replication and tropism.
J Virol. 2012 Sep;86(17):9015-24. doi: 10.1128/JVI.00131-12. Epub 2012 Jun 6.
4
Non-canonical translation in RNA viruses.
J Gen Virol. 2012 Jul;93(Pt 7):1385-1409. doi: 10.1099/vir.0.042499-0. Epub 2012 Apr 25.
6
Design and construction of 2A peptide-linked multicistronic vectors.
Cold Spring Harb Protoc. 2012 Feb 1;2012(2):199-204. doi: 10.1101/pdb.ip067876.
7
Structural insights into the coupling of virion assembly and rotavirus replication.
Nat Rev Microbiol. 2012 Jan 23;10(3):165-77. doi: 10.1038/nrmicro2673.
8
Characterization of the stop codon readthrough signal of Colorado tick fever virus segment 9 RNA.
RNA. 2012 Feb;18(2):241-52. doi: 10.1261/rna.030338.111. Epub 2011 Dec 21.
9
Addition of exogenous polypeptides on the mammalian reovirus outer capsid using reverse genetics.
J Virol Methods. 2012 Feb;179(2):342-50. doi: 10.1016/j.jviromet.2011.11.021. Epub 2011 Dec 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验