Rotavirus Molecular Biology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA.
J Virol. 2013 Jun;87(11):6211-20. doi: 10.1128/JVI.00413-13. Epub 2013 Mar 27.
The rotavirus (RV) genome consists of 11 segments of double-stranded RNA (dsRNA). Typically, each segment contains 5' and 3' untranslated regions (UTRs) that flank an open reading frame (ORF) encoding a single protein. RV variants with segments of atypical size owing to sequence rearrangements have been described. In many cases, the rearrangement originates from a partial head-to-tail sequence duplication that initiates after the stop codon of the ORF, leaving the protein product of the segment unaffected. To probe the limits of the RV genome to accommodate additional genetic sequence, we used reverse genetics to insert duplications (analogous to synthetic rearrangements) and heterologous sequences into the 3' UTR of the segment encoding NSP2 (gene 8). The approach allowed the recovery of recombinant RVs that contained sequence duplications (up to 200 bp) and heterologous sequences, including those for FLAG, the hepatitis C virus E2 epitope, and the internal ribosome entry site of cricket paralysis virus. The recombinant RVs grew to high titer (>10(7) PFU/ml) and remained genetically stable during serial passage. Despite their longer 3' UTRs, rearranged RNAs of recombinant RVs expressed wild-type levels of protein in vivo. Competitive growth experiments indicated that, unlike RV segments with naturally occurring sequence duplications, genetically engineered segments were less efficiently packaged into progeny viruses. Thus, features of naturally occurring rearranged segments, other than their increased length, contribute to their enhanced packaging phenotype. Our results define strategies for developing recombinant RVs as expression vectors, potentially leading to next-generation RV vaccines that induce protection against other infectious agents.
轮状病毒 (RV) 基因组由 11 个双链 RNA (dsRNA) 片段组成。通常,每个片段包含 5' 和 3' 非翻译区 (UTR),它们侧翼着一个开放阅读框 (ORF),该 ORF 编码单个蛋白质。由于序列重排,已经描述了具有非典型大小片段的 RV 变体。在许多情况下,重排源自部分从头至尾的序列复制,该复制在 ORF 的终止密码子之后开始,而不影响片段的蛋白质产物。为了探究 RV 基因组容纳额外遗传序列的极限,我们使用反向遗传学将复制(类似于合成重排)和异源序列插入编码 NSP2(基因 8)的片段的 3'UTR 中。该方法允许回收包含序列重复(多达 200bp)和异源序列的重组 RV,包括 FLAG、丙型肝炎病毒 E2 表位和蟋蟀麻痹病毒的内部核糖体进入位点。重组 RV 生长到高滴度(>10(7)PFU/ml),并在连续传代过程中保持遗传稳定性。尽管它们的 3'UTR 较长,但重组 RV 的重排 RNA 在体内表达野生型水平的蛋白质。竞争生长实验表明,与具有天然序列重复的 RV 片段不同,基因工程片段被更有效地包装到子代病毒中。因此,除了长度增加之外,天然发生的重排片段的特征有助于其增强的包装表型。我们的结果定义了开发重组 RV 作为表达载体的策略,这可能导致诱导针对其他感染性病原体的保护作用的下一代 RV 疫苗。