Suppr超能文献

采用水力空化、化学和高级氧化组合工艺降解 2,4-二硝基苯酚。

Degradation of 2,4-dinitrophenol using a combination of hydrodynamic cavitation, chemical and advanced oxidation processes.

机构信息

Chemical Engineering Department, Institute of Chemical Technology, Matunga, Mumbai 40019, India.

出版信息

Ultrason Sonochem. 2013 Sep;20(5):1226-35. doi: 10.1016/j.ultsonch.2013.02.004. Epub 2013 Mar 7.

Abstract

In the present work, degradation of 2,4-dinitrophenol (DNP), a persistent organic contaminant with high toxicity and very low biodegradability has been investigated using combination of hydrodynamic cavitation (HC) and chemical/advanced oxidation. The cavitating conditions have been generated using orifice plate as a cavitating device. Initially, the optimization of basic operating parameters have been done by performing experiments over varying inlet pressure (over the range of 3-6 bar), temperature (30 °C, 35 °C and 40 °C) and solution pH (over the range of 3-11). Subsequently, combined treatment strategies have been investigated for process intensification of the degradation process. The effect of HC combined with chemical oxidation processes such as hydrogen peroxide (HC/H2O2), ferrous activated persulfate (HC/Na2S2O8/FeSO4) and HC coupled with advanced oxidation processes such as conventional Fenton (HC/FeSO4/H2O2), advanced Fenton (HC/Fe/H2O2) and Fenton-like process (HC/CuO/H2O2) on the extent of degradation of DNP have also been investigated at optimized conditions of pH 4, temperature of 35 °C and inlet pressure of 4 bar. Kinetic study revealed that degradation of DNP fitted first order kinetics for all the approaches under investigation. Complete degradation with maximum rate of DNP degradation has been observed for the combined HC/Fenton process. The energy consumption analysis for hydrodynamic cavitation based process has been done on the basis of cavitational yield. Degradation intermediates have also been identified and quantified in the current work. The synergistic index calculated for all the combined processes indicates HC/Fenton process is more feasible than the combination of HC with other Fenton like processes.

摘要

在本工作中,使用水力空化(HC)结合化学/高级氧化法研究了具有高毒性和极低生物降解性的持久性有机污染物 2,4-二硝基苯酚(DNP)的降解。使用孔板作为空化装置产生空化条件。最初,通过在不同入口压力(3-6 巴范围内)、温度(30°C、35°C 和 40°C)和溶液 pH(3-11 范围内)下进行实验,对基本操作参数进行了优化。随后,研究了组合处理策略以强化降解过程。研究了 HC 与化学氧化过程(如过氧化氢(HC/H2O2)、亚铁激活过硫酸盐(HC/Na2S2O8/FeSO4))和 HC 与高级氧化过程(如常规芬顿(HC/FeSO4/H2O2)、高级芬顿(HC/Fe/H2O2)和类芬顿过程(HC/CuO/H2O2))相结合对 DNP 降解程度的影响在优化的 pH 4、温度 35°C 和入口压力 4 bar 条件下进行了研究。动力学研究表明,在所研究的所有方法中,DNP 的降解均符合一级动力学。在组合的 HC/Fenton 工艺中观察到 DNP 的完全降解和最大降解速率。根据空化产率对基于水力空化的工艺的能量消耗进行了分析。在当前工作中还鉴定和定量了降解中间体。所有组合工艺的协同指数表明,HC/Fenton 工艺比 HC 与其他类 Fenton 工艺的组合更可行。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验