Suppr超能文献

使用 JAGS 为排序数据建立贝叶斯瑟斯顿模型。

Bayesian Thurstonian models for ranking data using JAGS.

机构信息

Department of Statistical Science, University of Idaho, 875 Perimeter Drive Stop 1104, Moscow, ID, 83844-1104, USA.

出版信息

Behav Res Methods. 2013 Sep;45(3):857-72. doi: 10.3758/s13428-012-0300-3.

Abstract

A Thurstonian model for ranking data assumes that observed rankings are consistent with those of a set of underlying continuous variables. This model is appealing since it renders ranking data amenable to familiar models for continuous response variables-namely, linear regression models. To date, however, the use of Thurstonian models for ranking data has been very rare in practice. One reason for this may be that inferences based on these models require specialized technical methods. These methods have been developed to address computational challenges involved in these models but are not easy to implement without considerable technical expertise and are not widely available in software packages. To address this limitation, we show that Bayesian Thurstonian models for ranking data can be very easily implemented with the JAGS software package. We provide JAGS model files for Thurstonian ranking models for general use, discuss their implementation, and illustrate their use in analyses.

摘要

一种图斯顿模型用于对数据进行排名,该模型假设观测到的排名与一组潜在的连续变量的排名一致。该模型很有吸引力,因为它使得排名数据可以应用于连续响应变量的常用模型,即线性回归模型。然而,迄今为止,图斯顿模型在实践中很少用于排名数据。原因之一可能是基于这些模型的推断需要专门的技术方法。这些方法是为解决这些模型中的计算挑战而开发的,但如果没有相当的技术专长,就很难实现,并且在软件包中也不容易获得。为了解决这个限制,我们表明,贝叶斯图斯顿模型可非常容易地使用 JAGS 软件包来实现。我们提供了通用的图斯顿排名模型的 JAGS 模型文件,讨论了它们的实现,并说明了它们在分析中的使用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验