The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
Pennsylvania State University, Hershey, PA, USA.
BMC Bioinformatics. 2022 Mar 23;23(1):102. doi: 10.1186/s12859-021-04496-8.
Just Another Gibbs Sampling (JAGS) is a convenient tool to draw posterior samples using Markov Chain Monte Carlo for Bayesian modeling. However, the built-in function dinterval() for censored data misspecifies the default computation of deviance function, which limits likelihood-based Bayesian model comparison.
To establish an automatic approach to specifying the correct deviance function in JAGS, we propose a simple and generic alternative modeling strategy for the analysis of censored outcomes. The two illustrative examples demonstrate that the alternative strategy not only properly draws posterior samples in JAGS, but also automatically delivers the correct deviance for model assessment. In the survival data application, our proposed method provides the correct value of mean deviance based on the exact likelihood function. In the drug safety data application, the deviance information criterion and penalized expected deviance for seven Bayesian models of censored data are simultaneously computed by our proposed approach and compared to examine the model performance.
We propose an effective strategy to model censored data in the Bayesian modeling framework in JAGS with the correct deviance specification, which can simplify the calculation of popular Kullback-Leibler based measures for model selection. The proposed approach applies to a broad spectrum of censored data types, such as survival data, and facilitates different censored Bayesian model structures.
Just Another Gibbs Sampling (JAGS) 是一种方便的工具,可使用马尔可夫链蒙特卡罗 (MCMC) 为贝叶斯建模抽取后验样本。然而,针对删失数据的内置函数 dinterval() 错误指定了偏差函数的默认计算,这限制了基于似然的贝叶斯模型比较。
为了在 JAGS 中建立指定正确偏差函数的自动方法,我们提出了一种简单而通用的替代建模策略,用于分析删失结果。两个说明性示例表明,替代策略不仅可以在 JAGS 中正确抽取后验样本,而且还可以自动提供用于模型评估的正确偏差。在生存数据应用中,我们的方法基于精确似然函数提供了正确的平均偏差值。在药物安全数据应用中,我们提出的方法同时计算了七个删失数据贝叶斯模型的偏差信息准则和惩罚期望偏差,以检查模型性能。
我们提出了一种在 JAGS 中的贝叶斯建模框架中对删失数据进行建模的有效策略,该策略可简化基于 Kullback-Leibler 的常用模型选择度量的计算。该方法适用于广泛的删失数据类型,如生存数据,并促进了不同的删失贝叶斯模型结构。