Department of Medicinal Chemistry, University of Illinois at Chicago, Chicago, Illinois 60612, USA.
J Biol Chem. 2013 May 31;288(22):16004-15. doi: 10.1074/jbc.M112.432294. Epub 2013 Apr 1.
Methylation of lysine residues on histone tails is an important epigenetic modification that is dynamically regulated through the combined effects of methyltransferases and demethylases. The Jumonji C domain Fe(II) α-ketoglutarate family of proteins performs the majority of histone demethylation. We demonstrate that nitric oxide ((•)NO) directly inhibits the activity of the demethylase KDM3A by forming a nitrosyliron complex in the catalytic pocket. Exposing cells to either chemical or cellular sources of (•)NO resulted in a significant increase in dimethyl Lys-9 on histone 3 (H3K9me2), the preferred substrate for KDM3A. G9a, the primary methyltransferase acting on H3K9me2, was down-regulated in response to (•)NO, and changes in methylation state could not be accounted for by methylation in general. Furthermore, cellular iron sequestration via dinitrosyliron complex formation correlated with increased methylation. The mRNA of several histone demethylases and methyltransferases was also differentially regulated in response to (•)NO. Taken together, these data reveal three novel and distinct mechanisms whereby (•)NO can affect histone methylation as follows: direct inhibition of Jumonji C demethylase activity, reduction in iron cofactor availability, and regulation of expression of methyl-modifying enzymes. This model of (•)NO as an epigenetic modulator provides a novel explanation for nonclassical gene regulation by (•)NO.
赖氨酸残基在组蛋白尾部的甲基化是一种重要的表观遗传修饰,通过甲基转移酶和去甲基酶的综合作用进行动态调节。Jumonji C 结构域 Fe(II)α-酮戊二酸家族蛋白执行大多数组蛋白去甲基化。我们证明,一氧化氮 ((•)NO) 通过在催化口袋中形成亚硝酰铁配合物,直接抑制去甲基酶 KDM3A 的活性。使细胞暴露于化学或细胞来源的 (•)NO 会导致组蛋白 3 (H3K9me2) 上赖氨酸 9 的二甲基化 (H3K9me2) 显著增加,这是 KDM3A 的首选底物。G9a 是主要作用于 H3K9me2 的甲基转移酶,对 (•)NO 产生反应而被下调,并且甲基化状态的变化不能用一般的甲基化来解释。此外,通过二硝酰铁配合物形成对细胞内铁的螯合与甲基化增加相关。几种组蛋白去甲基酶和甲基转移酶的 mRNA 也对 (•)NO 做出了不同的调节。总之,这些数据揭示了 (•)NO 可以影响组蛋白甲基化的三种新的不同机制如下:直接抑制 Jumonji C 去甲基酶活性、降低铁辅因子的可用性和调节甲基化修饰酶的表达。这种作为表观遗传调节剂的 (•)NO 的模型为 (•)NO 对非经典基因调控提供了一个新的解释。