Suppr超能文献

一氧化氮通过抑制含有 Jumonji C 结构域的去甲基化酶来修饰组蛋白整体甲基化。

Nitric oxide modifies global histone methylation by inhibiting Jumonji C domain-containing demethylases.

机构信息

Department of Medicinal Chemistry, University of Illinois at Chicago, Chicago, Illinois 60612, USA.

出版信息

J Biol Chem. 2013 May 31;288(22):16004-15. doi: 10.1074/jbc.M112.432294. Epub 2013 Apr 1.

Abstract

Methylation of lysine residues on histone tails is an important epigenetic modification that is dynamically regulated through the combined effects of methyltransferases and demethylases. The Jumonji C domain Fe(II) α-ketoglutarate family of proteins performs the majority of histone demethylation. We demonstrate that nitric oxide ((•)NO) directly inhibits the activity of the demethylase KDM3A by forming a nitrosyliron complex in the catalytic pocket. Exposing cells to either chemical or cellular sources of (•)NO resulted in a significant increase in dimethyl Lys-9 on histone 3 (H3K9me2), the preferred substrate for KDM3A. G9a, the primary methyltransferase acting on H3K9me2, was down-regulated in response to (•)NO, and changes in methylation state could not be accounted for by methylation in general. Furthermore, cellular iron sequestration via dinitrosyliron complex formation correlated with increased methylation. The mRNA of several histone demethylases and methyltransferases was also differentially regulated in response to (•)NO. Taken together, these data reveal three novel and distinct mechanisms whereby (•)NO can affect histone methylation as follows: direct inhibition of Jumonji C demethylase activity, reduction in iron cofactor availability, and regulation of expression of methyl-modifying enzymes. This model of (•)NO as an epigenetic modulator provides a novel explanation for nonclassical gene regulation by (•)NO.

摘要

赖氨酸残基在组蛋白尾部的甲基化是一种重要的表观遗传修饰,通过甲基转移酶和去甲基酶的综合作用进行动态调节。Jumonji C 结构域 Fe(II)α-酮戊二酸家族蛋白执行大多数组蛋白去甲基化。我们证明,一氧化氮 ((•)NO) 通过在催化口袋中形成亚硝酰铁配合物,直接抑制去甲基酶 KDM3A 的活性。使细胞暴露于化学或细胞来源的 (•)NO 会导致组蛋白 3 (H3K9me2) 上赖氨酸 9 的二甲基化 (H3K9me2) 显著增加,这是 KDM3A 的首选底物。G9a 是主要作用于 H3K9me2 的甲基转移酶,对 (•)NO 产生反应而被下调,并且甲基化状态的变化不能用一般的甲基化来解释。此外,通过二硝酰铁配合物形成对细胞内铁的螯合与甲基化增加相关。几种组蛋白去甲基酶和甲基转移酶的 mRNA 也对 (•)NO 做出了不同的调节。总之,这些数据揭示了 (•)NO 可以影响组蛋白甲基化的三种新的不同机制如下:直接抑制 Jumonji C 去甲基酶活性、降低铁辅因子的可用性和调节甲基化修饰酶的表达。这种作为表观遗传调节剂的 (•)NO 的模型为 (•)NO 对非经典基因调控提供了一个新的解释。

相似文献

1
Nitric oxide modifies global histone methylation by inhibiting Jumonji C domain-containing demethylases.
J Biol Chem. 2013 May 31;288(22):16004-15. doi: 10.1074/jbc.M112.432294. Epub 2013 Apr 1.
2
Evolution and conservation of JmjC domain proteins in the green lineage.
Mol Genet Genomics. 2016 Feb;291(1):33-49. doi: 10.1007/s00438-015-1089-4. Epub 2015 Jul 8.
3
G9a orchestrates PCL3 and KDM7A to promote histone H3K27 methylation.
Sci Rep. 2015 Dec 21;5:18709. doi: 10.1038/srep18709.
4
Epigenetic gene regulation by plant Jumonji group of histone demethylase.
Biochim Biophys Acta. 2011 Aug;1809(8):421-6. doi: 10.1016/j.bbagrm.2011.03.004. Epub 2011 Mar 16.
6
Structural insights into histone lysine demethylation.
Curr Opin Struct Biol. 2010 Dec;20(6):739-48. doi: 10.1016/j.sbi.2010.09.006. Epub 2010 Oct 21.
8
Histone H3K9 Methylation Features under Hypoxic Conditions after the HIF1A Knockdown in Mesenchymal Stromal Cells In Vitro.
Bull Exp Biol Med. 2024 Aug;177(4):431-435. doi: 10.1007/s10517-024-06203-y. Epub 2024 Sep 11.
9
Vitamin C induces specific demethylation of H3K9me2 in mouse embryonic stem cells via Kdm3a/b.
Epigenetics Chromatin. 2017 Jul 12;10:36. doi: 10.1186/s13072-017-0143-3. eCollection 2017.
10

引用本文的文献

1
How chronic inflammation fuels carcinogenesis as an environmental epimutagen.
Discov Oncol. 2025 Jun 18;16(1):1150. doi: 10.1007/s12672-025-02971-9.
2
Nitric Oxide restricts iron availability and induces quorum sensing in Streptococcus pyogenes.
Redox Biol. 2025 Jun 4;85:103699. doi: 10.1016/j.redox.2025.103699.
3
Redox-signaling in innate immune memory: Similar mechanisms in animals/humans and plants.
Redox Biol. 2025 Jul;84:103702. doi: 10.1016/j.redox.2025.103702. Epub 2025 May 27.
4
The Ever-Expanding Influence of the Endothelial Nitric Oxide Synthase.
Basic Clin Pharmacol Toxicol. 2025 May;136(5):e70029. doi: 10.1111/bcpt.70029.
5
Nitric oxide-mediated thermomemory: a new perspective on plant heat stress resilience.
Front Plant Sci. 2025 Feb 28;16:1525336. doi: 10.3389/fpls.2025.1525336. eCollection 2025.
6
Amino acid metabolism in breast cancer: pathogenic drivers and therapeutic opportunities.
Protein Cell. 2025 Jul 19;16(7):506-531. doi: 10.1093/procel/pwaf011.
8
Diet-Modifiable Redox Alterations in Ageing and Cancer.
Subcell Biochem. 2024;107:129-172. doi: 10.1007/978-3-031-66768-8_7.

本文引用的文献

1
Inhibition of histone demethylase JMJD1A improves anti-angiogenic therapy and reduces tumor-associated macrophages.
Cancer Res. 2013 May 15;73(10):3019-28. doi: 10.1158/0008-5472.CAN-12-3231. Epub 2013 Mar 14.
2
The histone demethylase UTX regulates stem cell migration and hematopoiesis.
Blood. 2013 Mar 28;121(13):2462-73. doi: 10.1182/blood-2012-08-452003. Epub 2013 Jan 30.
3
Depletion of JARID1B induces cellular senescence in human colorectal cancer.
Int J Oncol. 2013 Apr;42(4):1212-8. doi: 10.3892/ijo.2013.1799. Epub 2013 Jan 25.
4
KDM2B promotes pancreatic cancer via Polycomb-dependent and -independent transcriptional programs.
J Clin Invest. 2013 Feb;123(2):727-39. doi: 10.1172/JCI64535. Epub 2013 Jan 16.
5
Histone demethylase Jumonji D3 (JMJD3) as a tumor suppressor by regulating p53 protein nuclear stabilization.
PLoS One. 2012;7(12):e51407. doi: 10.1371/journal.pone.0051407. Epub 2012 Dec 7.
7
Histone demethylase KDM6B promotes epithelial-mesenchymal transition.
J Biol Chem. 2012 Dec 28;287(53):44508-17. doi: 10.1074/jbc.M112.424903. Epub 2012 Nov 14.
9
Coordinated repression of cell cycle genes by KDM5A and E2F4 during differentiation.
Proc Natl Acad Sci U S A. 2012 Nov 6;109(45):18499-504. doi: 10.1073/pnas.1216724109. Epub 2012 Oct 23.
10
Investigations on the oxygen dependence of a 2-oxoglutarate histone demethylase.
Biochem J. 2013 Jan 15;449(2):491-6. doi: 10.1042/BJ20121155.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验