Suppr超能文献

综合蛋白质组学分析流程为预测子痫前期提供了新的生物标志物。

Integrated proteomics pipeline yields novel biomarkers for predicting preeclampsia.

机构信息

Maternal & Fetal Health Research Centre, Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.

出版信息

Hypertension. 2013 Jun;61(6):1281-8. doi: 10.1161/HYPERTENSIONAHA.113.01168. Epub 2013 Apr 1.

Abstract

Preeclampsia, a hypertensive pregnancy complication, is largely unpredictable in healthy nulliparous pregnant women. Accurate preeclampsia prediction in this population would transform antenatal care. To identify novel protein markers relevant to the prediction of preeclampsia, a 3-step mass spectrometric work flow was applied. On selection of candidate biomarkers, mostly from an unbiased discovery experiment (19 women), targeted quantitation was used to verify and validate candidate biomarkers in 2 independent cohorts from the SCOPE (SCreening fOr Pregnancy Endpoints) study. Candidate proteins were measured in plasma specimens collected at 19 to 21 weeks' gestation from 100 women who later developed preeclampsia and 200 women without preeclampsia recruited from Australia and New Zealand. Protein levels (n=25), age, and blood pressure were then analyzed using logistic regression to identify multimarker models (maximum 6 markers) that met predefined criteria: sensitivity ≥50% at 20% positive predictive value. These 44 algorithms were then tested in an independent European cohort (n=300) yielding 8 validated models. These 8 models detected 50% to 56% of preeclampsia cases in the training and validation sets; the detection rate for preterm preeclampsia cases was 80%. Validated models combine insulin-like growth factor acid labile subunit and soluble endoglin, supplemented with maximally 4 markers of placental growth factor, serine peptidase inhibitor Kunitz type 1, melanoma cell adhesion molecule, selenoprotein P, and blood pressure. Predictive performances were maintained when exchanging mass spectrometry measurements with ELISA measurements for insulin-like growth factor acid labile subunit. In conclusion, we demonstrated that biomarker combinations centered on insulin-like growth factor acid labile subunit have the potential to predict preeclampsia in healthy nulliparous women.

摘要

子痫前期是一种妊娠高血压并发症,在健康的初产妇中大多无法预测。如果能在该人群中准确预测子痫前期,将改变产前保健模式。为了鉴定与子痫前期预测相关的新型蛋白标志物,采用了 3 步质谱工作流程。在选择候选生物标志物时,主要是基于一项无偏发现实验(19 名女性),采用靶向定量法在 SCOPE(妊娠终点筛查)研究中的 2 个独立队列中验证和确认候选生物标志物。从 100 名随后发生子痫前期和 200 名未发生子痫前期的澳大利亚和新西兰女性中采集妊娠 19 至 21 周的血浆标本,检测候选蛋白。分析 25 名患者的蛋白水平、年龄和血压,采用逻辑回归确定符合以下标准的多标志物模型(最多 6 个标志物):阳性预测值 20%时灵敏度≥50%。然后在一个独立的欧洲队列(n=300)中测试这 44 个算法,得到 8 个验证模型。这些模型在训练和验证组中检测到 50%至 56%的子痫前期病例;早产子痫前期病例的检出率为 80%。验证模型将胰岛素样生长因子结合蛋白 1 和可溶性内皮糖蛋白结合,辅以胎盘生长因子、丝氨酸肽酶抑制剂 Kunitz 型 1、黑素瘤细胞黏附分子、硒蛋白 P 和血压的最多 4 个标志物。用酶联免疫吸附测定法(ELISA)代替质谱法测量胰岛素样生长因子结合蛋白 1 时,预测性能保持不变。总之,我们证明以胰岛素样生长因子结合蛋白 1 为中心的标志物组合具有预测健康初产妇子痫前期的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验