Suppr超能文献

加权协方差估计的定量形状分析提高了统计效率。

Quantitative shape analysis with weighted covariance estimates for increased statistical efficiency.

机构信息

Imaging Sciences, Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK.

出版信息

Front Zool. 2013 Apr 2;10(1):16. doi: 10.1186/1742-9994-10-16.

Abstract

BACKGROUND

The introduction and statistical formalisation of landmark-based methods for analysing biological shape has made a major impact on comparative morphometric analyses. However, a satisfactory solution for including information from 2D/3D shapes represented by 'semi-landmarks' alongside well-defined landmarks into the analyses is still missing. Also, there has not been an integration of a statistical treatment of measurement error in the current approaches.

RESULTS

We propose a procedure based upon the description of landmarks with measurement covariance, which extends statistical linear modelling processes to semi-landmarks for further analysis. Our formulation is based upon a self consistent approach to the construction of likelihood-based parameter estimation and includes corrections for parameter bias, induced by the degrees of freedom within the linear model. The method has been implemented and tested on measurements from 2D fly wing, 2D mouse mandible and 3D mouse skull data. We use these data to explore possible advantages and disadvantages over the use of standard Procrustes/PCA analysis via a combination of Monte-Carlo studies and quantitative statistical tests. In the process we show how appropriate weighting provides not only greater stability but also more efficient use of the available landmark data. The set of new landmarks generated in our procedure ('ghost points') can then be used in any further downstream statistical analysis.

CONCLUSIONS

Our approach provides a consistent way of including different forms of landmarks into an analysis and reduces instabilities due to poorly defined points. Our results suggest that the method has the potential to be utilised for the analysis of 2D/3D data, and in particular, for the inclusion of information from surfaces represented by multiple landmark points.

摘要

背景

基于地标方法的引入和统计形式化,对生物形状的比较形态计量分析产生了重大影响。然而,如何将“半地标”和定义明确的地标所代表的 2D/3D 形状信息纳入分析中,仍然没有令人满意的解决方案。此外,目前的方法中还没有将测量误差的统计处理进行整合。

结果

我们提出了一种基于地标测量协方差描述的方法,将统计线性模型过程扩展到半地标,以进行进一步分析。我们的方法基于一种自洽的方法来构建基于似然的参数估计,并包括对由线性模型自由度引起的参数偏差的修正。该方法已经在二维果蝇翅膀、二维老鼠下颌骨和三维老鼠头骨数据的测量上进行了实现和测试。我们使用这些数据通过蒙特卡罗研究和定量统计检验的组合,探索了在使用标准 Procrustes/PCA 分析时可能存在的优势和劣势。在这个过程中,我们展示了适当的加权不仅可以提供更大的稳定性,还可以更有效地利用可用的地标数据。我们的方法生成的一组新地标(“幽灵点”)可以在任何进一步的下游统计分析中使用。

结论

我们的方法为将不同形式的地标纳入分析提供了一种一致的方法,并减少了由于地标定义不明确而导致的不稳定性。我们的结果表明,该方法有可能用于 2D/3D 数据的分析,特别是用于纳入由多个地标点表示的表面信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/061b/3684533/45fd6498525f/1742-9994-10-16-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验